In this paper, we present the design of a novel 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation based on the principle from the conceptual design. The proposed mechanism can actualize the rotational movements of the ankle in three directions while at the same time the mechanism center of rotations can match the ankle axes of rotations compared with other multi-degree-of-freedom devices, owing to the structural characteristics of the special constraint limb and platform. A new actuator redundancy scheme is used, which not only still maintains all inherent advantages from actuator redundancy but also possesses the kinematic partially decouple feature that improves the flexibility of the robotic system. Kinematic performances, such as dexterity, singularity and stiffness, are analyzed based on the computed Jacobian. Then simulation is performed. All the results show that the redundant robot has no singularity, better dexterity and stiffness within the prescribed workspace in comparison with the corresponding 3-RUS/RRR nonredundant robot, and is suitable for rehabilitation exercise.

References

References
1.
Sports Medicine
,
2012
, “
Ankle Sprain Rehabilitation
,” http://sportsmedicine.about.com/cs/ankle/a/aa051602a.htm
2.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Rob. Syst.
,
2011
,
1
11
.
3.
Roy
,
A.
,
Krebs
,
H. I.
,
Williams
,
D. J.
,
Bever
,
C. T.
,
Forrester
,
L. W.
,
Macko
,
R. M.
, and
Hogan
,
N.
,
2009
, “
Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation
,”
IEEE Trans. Rob. Autom.
,
25
(
3
), pp.
569
582
.10.1109/TRO.2009.2019783
4.
Bharadwaj
,
K.
, and
Sugar
,
T. G.
,
2006
, “
Kinematics of a Robotic Gait Trainer for Stroke Rehabilitation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Orland, FL
, pp.
3492
3497
.
5.
Blaya
,
J. A.
, and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle-Foot Orthoses to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.10.1109/TNSRE.2003.823266
6.
Ding
,
Y.
,
Sivak
,
M.
,
Weinberg
,
B.
,
Mavroidis
,
C.
, and
Holden
,
M. K.
,
2010
, “
NUVABAT: Northeastern University Virtual Ankle and Balance Trainer
,”
Proceedings of the IEEE Haptics Symposium
,
Waltham, Mass
, pp.
509
514
.
8.
Girone
,
M.
,
Burdea
,
G.
, and
Bouzit
,
M.
,
1999
, “
Rutgers Ankle Orthopedic Rehabilitation Interface
,”
Proc. ASME Dyn. Syst. Control Div.
,
67
, pp.
305
312
.
9.
Dai
,
J. S.
, and
Zhao
,
T.
,
2004
, “
Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of a Robotic Rehabilitation Device
,”
Auton. Rob.
,
16
(
2
), pp.
207
218
.10.1023/B:AURO.0000016866.80026.d7
10.
Liu
,
G.
,
Gao
,
J.
,
Yue
,
H.
,
Zhang
,
X.
, and
Lu
,
G.
,
2006
, “
Design and Kinematics Analysis of Parallel Robots for Ankle Rehabilitation
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing
, pp.
253
258
.
11.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Robot. Res.
,
28
(
9
), pp.
1216
1227
.10.1177/0278364909104221
12.
Tsoi
,
Y. H.
, and
Xie
,
S. Q.
,
2010
, “
Design and Control of a Parallel Robot for Ankle Rehabilitation
,”
Int. J. Intell. Syst. Technol. Appl.
,
8
(
1
), pp.
100
113
.
14.
Baldisserri
,
B.
, and
Parenti-Castelli
,
V.
,
2012
, “
A New 3D Mechanism for Modeling the Passive Motion of the Tibia–Fibula–Ankle Complex
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021004
.10.1115/1.4005662
15.
Dettwyler
,
M.
,
Stacoff
,
A.
,
Quervain
,
I. A.
, and
Stussi
,
E.
,
2004
, “
Modelling of Ankle Joint Complex. Reflections With Regards to Ankle Prostheses
,”
J. Foot Ankle Surg.
,
10
(
3
), pp.
109
119
.10.1016/j.fas.2004.06.003
16.
Sung
,
E.
,
Slocum
,
A. H.
,
Ma
,
R.
,
Bean
,
J. F.
, and
Culpepper
,
M. L.
,
2011
, “
Design of an Ankle Rehabilitation Device Using Compliant Mechanisms
,”
ASME J. Med. Devices
,
5
(
1
), p.
011001
.10.1115/1.4002901
17.
Wu
,
G.
, et al. .,
2002
, “
Letter to Editor: ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
18.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
,” U.S. Patent No. 4976582.
19.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
Proceedings of the IEEE/ASME on Advanced Intelligent Mechatronics
,
Atlanta
, pp.
508
513
.
20.
Wahl
,
J.
,
2000
, “
Articulated Tool Head
,” WIPO, WO/2000/025976.
21.
Neumann
,
K. E.
,
1988
, “
Robot
,” U.S. Patent No. 4732525.
22.
Gosselin
,
C.
, and
Hamel
,
J.
,
1994
, “
The Agile Eye: A High–Performance Three-Degree-of-Freedom Camera-Orienting Device
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego
, pp.
781
786
.
23.
Gallardo-Alvarado
,
J.
,
Ramirez-Agundis
,
A.
,
Rojas-Garduno
,
H.
, and
Arroyo-Ramirez
,
B.
,
2010
, “
Kinematics of an Asymmetrical Three-Legged Parallel Manipulator by Means of the Screw Theory
,”
Mech. Mach. Theory
,
45
(
7
), pp.
1013
1023
.10.1016/j.mechmachtheory.2010.02.003
24.
Mohamed
,
M. G.
, and
Duffy
,
J.
,
1985
, “
A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators
,”
ASME J. Mech. Des.
,
107
(
2
), pp.
226
229
.10.1115/1.3258713
25.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robot
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.10.1115/1.2121740
26.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism that Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.10.1115/1.2988472
27.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
28.
Joshi
,
S.
, and
Tsai
,
L. W.
,
2003
, “
A Comparison Study of Two 3-DOF Parallel Manipulators: One With Three and the Other With Four Supporting Limbs
,”
IEEE Trans. Rob. Autom.
,
19
(
2
), pp.
200
209
.10.1109/TRA.2003.808857
29.
Sadjadian
,
H.
, and
Taghirad
,
H. D.
,
2006
, “
Kinematic, Singularity and Stiffness Analysis of the Hydraulic Shoulder: A 3 DOF Redundant Parallel Manipulator
,”
Adv. Rob.
,
20
(
7
), pp.
763
781
.10.1163/156855306777681366
30.
Li
,
Y.
, and
Xu
,
Q.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.10.1016/j.mechmachtheory.2007.02.002
You do not currently have access to this content.