This paper presents a new method for the combined topological and geometric reconfiguration of a parallel robot to achieve task-based reconfiguration. Using the existing structure of a six degree-of-freedom (DOF) parallel robot, reconfiguration to limited mobility modes, a configuration with less than six degrees-of-freedom, can be achieved easily without the need to remove branches from the robot structure. Branch modules are instead, reconfigured from an unconstrained-active to a constrained-passive state by means of hybrid active/passive motors and reconfigurable universal-to-revolute joints. In doing so, the robot is capable of assuming a configuration in which the number of task-based degrees-of-freedom match the number of controllable actuators within the robot structure. The selection of branch modules for reconfiguration is independent of the limited mobility mode required and leads to multiple isomorphic configurations. A comparative study is thus needed to understand not only the implication of morphing, but also the capabilities of the reconfigured robot. For this purpose, a branch-based mobility analysis is performed and isomorphic configurations are identified. These isomorphic configurations are then compared based on their workspace and kinematic capabilities for which a parametric kinematic constraint formulation is developed. The comparative study evaluates the abilities of each configuration and is used for guidance in selecting an appropriate configuration for a particular task. The developed tools can also be used for design evaluation purposes.

References

References
1.
Xi
,
F.
,
Li
,
Y.
, and
Wang
,
H.
,
2011
, “
Module-Based Method for Design and Analysis of Reconfigurable Parallel Robots
,”
Front. Mech. Eng.
,
6
(
2
), pp.
151
159
.
2.
Bi
,
Z. M.
, and
Wang
,
L.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput.-Integr. Manufact.
,
25
, pp.
951
961
.10.1016/j.rcim.2009.04.004
3.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.10.1115/1.3211023
4.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
, pp.
1864
1876
.10.1016/j.mechmachtheory.2010.08.004
5.
Gan
,
D.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Changed-Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051001
.10.1115/1.4003920
6.
Kotlarski
,
J.
,
Abdellatif
,
H.
,
Ortmaier
,
T.
, and
Heimann
,
B.
,
2009
, “
Enlarging the Useable Workspace of Planar Parallel Robots Using Mechanisms of Variable Geometry
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, pp.
94
103
.
7.
Bi
,
Z. M.
, and
Kang
,
B.
,
2010
, “
Enhancement of Adaptability of Parallel Kinematic Machines With an Adjustable Platform
,”
ASME J. Manuf. Sci. Eng.
,
132
, p.
061016
.10.1115/1.4003120
8.
Sun
,
T.
,
Song
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
, p.
031009
.10.1115/1.4001781
9.
Chen
,
C.-T.
,
2012
, “
Reconfiguration of a Parallel Kinematic Manipulator for the Maximum Dynamic Load-Carrying Capacity
,”
Mech. Mach. Theory
,
54
, pp.
62
75
.10.1016/j.mechmachtheory.2012.03.002
10.
Dash
,
A. K.
,
Chen
,
I.-M.
,
Yeo
,
S. H.
, and
Yang
,
G.
,
2005
, “
Task-Orientated Configuration Design for Reconfigurable Parallel Manipulator Systems
,”
Int. J. Comput.-Integr. Manuf.
,
18
(
7
), pp.
615
634
.10.1080/09511920500069192
11.
Xi
,
F.
,
Xu
,
Y.
, and
Xiong
,
G.
,
2006
, “
Design and Analysis of a Re-Configurable Parallel Robot
,”
Mech. Mach. Theory
,
41
, pp.
191
211
.10.1016/j.mechmachtheory.2005.04.007
12.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P.-L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.10.1115/1.2717228
13.
Zhang
,
L.
, and
Dai
,
J. S.
,
2008
, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011012
.10.1115/1.2963025
14.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.10.1115/1.4002691
15.
Wang
,
C.
, and
Wang
,
L.
,
2010
, “
A Novel Cad System for Modular Reconfigurable Parallel Robots
,”
IEEE International Conference on Computer Design and Applications
, Vol.
4
, pp.
159
163
.
16.
Grosch
,
P.
,
Gregorio
,
R. D.
,
López
,
J.
, and
Thomas
,
F.
,
2010
, “
Motion Planning for a Novel Reconfigurable Parallel Manipulator With Lockable Revolute Joints
,”
IEEE International Conference on Robotics and Automation
, pp.
4697
4702
.
17.
Brisa
,
C.
, and
Csiszar
,
A.
,
2011
, “
Computation and Analysis of the Workspace of a Reconfigurable Parallel Robotic System
,”
Mech. Mach. Theory
,
46
, pp.
1647
1668
.10.1016/j.mechmachtheory.2011.06.014
18.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.10.1115/1.4006741
19.
Vertuan
,
A.
,
Legnani
,
G.
,
Admanini
,
R.
,
Tosi
,
D.
, and
Pedrocchi
,
N.
,
2009
, “
Performance Analysis of a Reconfigurable Redundant Parallel Manipulator
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, pp.
593
601
.
20.
Finistauri
,
A. D.
, and
Xi
,
F.
,
2009
, “
Type Synthesis and Kinematics of a Modular Variable Geometry Truss Mechanism for Aircraft Wing Morphing
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, pp.
470
477
.
21.
Finistauri
,
A. D.
,
Xi
,
F.
, and
Petz
,
B.
,
2008
, “
Architecture Design and Optimization of an on-the-Fly Reconfigurable Parallel Robot
,”
Parallel Manipulators—Towards New Applications
.
InTech
. Vienna, Austria, pp.
379
404
.
22.
Liu
,
G.
,
He
,
X.
,
Yuan
,
J.
, and
TBD
,
2008
, “
Development of a Modular and Reconfigurable Robot With Multiple Working Modes
,”
IEEE International Conference on Robotics and Automation
.
23.
Tsai
,
L.-W.
,
1998
, “
Systematic Enumeration of Parallel Manipulators
,” Technical Report No. TR98-33,
University of Maryland, Department of Mechanical Engineering Institute for Systems Research, College Park, MD
.
24.
Xi
,
F.
,
Zhang
,
D.
,
Xu
,
Z.
, and
Mechefske
,
C. M.
,
2003
, “
A Comparative Study on Tripod Units for Machine Tools
,”
Int. J. Mach. Tool. Manuf.
,
43
, pp.
721
730
.10.1016/S0890-6955(03)00024-5
25.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.10.1115/1.1469549
26.
Fattah
,
A.
, and
Ghasemi
,
A. M. H.
,
2002
, “
Isotropic Design of Spatial Parallel Manipulators
,”
Int. J. Robot. Res.
,
21
(
9
), pp.
811
824
.10.1177/0278364902021009842
27.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Robot. Res.
,
11
(
6
), pp.
560
571
.10.1177/027836499201100605
You do not currently have access to this content.