In this paper, we investigate the kinematic mechanism and path planning of a two-caster nonholonomic vehicle (the Essboard) which is a recent variant of skateboards. Different from the most studied Snakeboard, the Essboard consists of a torsion bar and two platforms, each of which contains a pedal and a caster. We study the relationship between the tilt angle of the pedal and the wheel direction of the caster. This relationship clarifies how to control the wheel direction by adjusting the tilt angle. Furthermore, the rotational radius of the Essboard is derived for a given pair of tilt angles of both pedals. The rotational radius of the Essboard is much different to that of other skateboards. Two experiments are conducted to verify the results. These results clarify the kinematic mechanism and lay a solid foundation for further investigation of the Essboard.

References

References
1.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
, Vol. 24,
Springer
,
New York
.
2.
Koon
,
W. S.
, and
Marsden
,
J. E.
,
1997
, “
Optimal Control for Holonomic and Nonholonomic Mechanical Systems With Symmetry and Lagrangian Reduction
,”
SIAM J. Control Optim.
,
35
(
3
), pp.
901
929
.10.1137/S0363012995290367
3.
Ostrowski
,
J.
,
Lewis
,
A.
,
Murray
,
R.
, and
Burdick
,
J.
,
1994
, “
Nonholonomic Mechanics and Locomotion: The Snakeboard Example
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
San Diego
, May 8–13, pp.
2391
2397
.
4.
Kremnev
,
A.
, and
Kuleshov
,
A.
,
2010
, “
Nonlinear Dynamics and Stability of the Skateboard
,”
Discrete Contin. Dyn. Syst.
,
3
(
1
), pp.
85
103
.10.3934/dcdss.2010.3.85
5.
Bullo
,
F.
, and
Lewis
,
A.
,
2003
, “
Kinematic Controllability and Motion Planning for the Snakeboard
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
494
498
.10.1109/TRA.2003.810236
6.
Iannitti
,
S.
, and
Lynch
,
K.
,
2004
, “
Minimum Control-Switch Motions for the Snakeboard: A Case Study in Kinematically Controllable Underactuated Systems
,”
IEEE Trans. Rob.
,
20
(
6
), pp.
994
1006
.10.1109/TRO.2004.829455
7.
Shammas
,
E. A.
,
Choset
,
H.
, and
Rizzi
,
A. A.
,
2007
, “
Towards a Unified Approach to Motion Planning for Dynamic Underactuated Mechanical Systems With Non-Holonomic Constraints
,”
Int. J. Robot. Res.
,
26
(
10
), pp.
1075
1124
.10.1177/0278364907082098
8.
Ito
,
S.
,
Takeuchi
,
S.
, and
Sasaki
,
M.
,
2012
, “
Motion Measurement of a Two-Wheeled Skateboard and Its Dynamical Simulation
,”
Appl. Math. Model.
,
36
(
5
), pp.
2178
2191
.10.1016/j.apm.2011.08.005
9.
Shammas
,
E.
, and
de Oliveira
,
M.
,
2011
, “
An Analytic Motion Planning Solution for the Snakeboard
,”
Proceedings of Robotics: Science and Systems VII, University of Southern California
,
Los Angeles, CA
, June 27–30.
10.
Shammas
,
E.
, and
de Oliveira
,
M.
,
2012
, “
Motion Planning for the Snakeboard
,”
Int. J. Robot. Res.
,
31
(
7
), pp.
872
885
.10.1177/0278364912441954
11.
Iannitti
,
S.
, and
Lynch
,
K.
,
2003
, “
Exact Minimum Control Switch Motion Planning for the Snakeboard
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
,
Las Vegas
, Oct. 27–Nov. 1, pp.
1437
1443
.
12.
Ispolov
,
Y. G.
, and
Smolnikov
,
B. A.
,
1996
, “
Skateboard Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
131
(
3–4
), pp.
327
333
.10.1016/0045-7825(95)00932-9
13.
Ostrowski
,
J.
, and
Burdick
,
J.
,
1998
, “
The Geometric Mechanics of Undulatory Robotic Locomotion
,”
Int. J. Robot. Res.
,
17
(
7
), pp.
683
701
.10.1177/027836499801700701
14.
Golubev
,
Y. F.
,
2006
, “
A Method for Controlling the Motion of a Robot Snakeboarder
,”
J. Appl. Math. Mech.
,
70
(
3
), pp.
319
333
.10.1016/j.jappmathmech.2006.07.005
15.
Kuleshov
,
A. S.
,
2008
, “
Nonlinear Dynamics of a Simplified Skateboard Model
,”
Eng. Sport 7
,
1
, pp.
135
142
. Available at: http://link.springer.com/chapter/10.1007%2F978-2-287-99054-0_16#
You do not currently have access to this content.