This paper presents a vector expression of the constant-orientation singularity locus of the general Gough–Stewart platform. The third-degree vector expression obtained does not contain a constant term, which allows the factorization of an instance of the position vector, thereby leading to a very compact form. Additionally, an expression of the vector orthogonal to the singularity locus is obtained as a byproduct. An alternative expression that reduces the number of times that the position vector appears in the expression is also presented. It is shown that a simplified architecture such as that of the Minimal Simplified Symmetric Manipulator (MSSM) can significantly reduce the complexity of the coefficients appearing in the expression.

References

References
1.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
2.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
Singularity-Free Path Planning for the Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
6
), pp.
711
725
.10.1016/S0094-114X(97)00095-5
3.
Merlet
,
J.-P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.10.1177/027836498900800504
4.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
,
1998
, “
Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms
,”
Advances in Robot Kinematics: Analysis and Control
, J. Lenarčič and M. L. Husty eds, Springer, Dordrecht, The Netherlands, pp.
105
114
.
5.
Ben-Horin
,
P.
, and
Shoham
,
M.
,
2009
, “
Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities
,”
Int. J. Robot. Res.
,
28
(
1
), pp.
127
141
.10.1177/0278364908095918
6.
Cao
,
Y.
,
Zhou
,
H.
,
Shen
,
L.
, and
Li
,
B.
,
2011
, “
Singularity Kinematics Principle and Position-Singularity Analyses of the 6-3 Stewart-Gough Parallel Manipulators
,”
J. Mech. Sci. Technol.
,
25
(
2
), pp.
513
522
.10.1007/s12206-010-1224-4
7.
Bohigas
,
O.
,
Manubens
,
M.
, and
Ros
,
L.
,
2012
, “
Planning Singularity-Free Force Feasible Paths on the Stewart Platform
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds, Springer, Dordrect, The Netherlands, pp.
245
252
.
8.
Bohigas
,
O.
,
Zlatanov
,
D.
,
Ros
,
L.
,
Manubens
,
M.
, and
Porta
,
J. M.
,
2012
, “
Numerical Computation of Manipulator Singularities
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1351
1358
.
9.
Li
,
H.
,
Gosselin
,
C. M.
,
Richard
,
M. J.
, and
Mayer St-Onge
,
B.
,
2006
, “
Analytic Form of the Six-Dimensional Singularity Locus of the General Gough-Stewart Platform
,”
ASME J. Mech. Des.
,
128
, pp.
279
287
.10.1115/1.2118733
10.
Mayer St-Onge
,
B.
, and
Gosselin
,
C. M.
,
2000
, “
Singularity Analysis and Representation of the General Gough-Stewart Platform
,”
Int. J. Robot. Res.
,
19
(
3
), pp.
271
288
.10.1177/02783640022066860
11.
Shanker
,
V.
, and
Bandyopadhay
,
S.
,
2012
, “
Singular Manifold of the General Hexagonal Stewart Platform Manipulator
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds, Springer, Dordrect, The Netherlands, pp.
397
404
.
12.
Cao
,
Y.
,
Wu
,
M.
, and
Zhou
,
H.
,
2013
, “
Position-Singularity Characterization of a Special Class of the Stewart Parallel Mechanisms
,”
Int. J. Rob. Autom.
,
28
(
1
), pp. 57–64.10.2316/Journal.206.2013.1.206-3654
13.
Strang
,
G.
,
2006
,
Linear Algebra and its Applications
,
4th ed.
,
Brooks/Cole
,
Belmont, CA
.
14.
Petersen
,
K. B.
, and
Pedersen
,
M. S.
,
2008
,
The Matrix Cookbook
, November 2008 Version, Technical University of Denmark, Denmark, p.
71
.
15.
Doyon
,
K.
,
2012
, “
Analyse Vectorielle des Lieux de Singularité de la Plate-Forme de Gough-Stewart
,” M.S. thesis, Université Laval, Québec, QC.
16.
Di Gregorio
,
R.
,
2002
, “
Singularity-Locus Expression of a Class of Parallel Mechanisms
,”
Robotica
,
20
, pp.
323
328
.
17.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
,
Dordrecht, The Netherlands
.
18.
Merlet
,
J.-P.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Robot. Res.
,
23
(
3
), pp.
221
235
.10.1177/0278364904039806
You do not currently have access to this content.