This paper presents a novel condylar hinge for robotic limbs which was inspired by the human knee joint. The ligaments in the human knee joint can be modeled as an inverted parallelogram four-bar mechanism. The knee joint also has a condylar cam mechanism between the femur and tibia bones. The bio-inspired joint mimics the four-bar mechanism and the cam mechanism of the human knee joint. The bio-inspired design has the same desirable features of a human knee joint including compactness, high mechanical advantage, high strength, high stiffness and locking in the upright position. These characteristics are important for robotic limbs where there are often tight space and mass limitations. A prototype hinge joint similar in size to the human knee joint has been designed and tested. Experimental tests have shown that the new condylar hinge joint has superior performance to a pin-jointed hinge in terms of mechanical advantage and stiffness. The prototype hinge has a mechanical advantage that is greater than a pin-jointed hinge by up to 35% which leads to a corresponding reduction in the peak force of the actuator of up to 35% for a squatting movement. The paper also presents a five-step design procedure to produce a combined inverted parallelogram mechanism with a cam mechanism.

References

References
1.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer Berlin Heidelberg
,
Berlin
.
2.
Rivin
,
E. I.
,
1988
,
Mechanical Design of Robots
,
McGraw-Hill
,
New York
.
3.
Gosselin
,
C. M.
, and
Zhang
,
D.
,
2002
, “
Stiffness Analysis of Parallel Mechanisms Using a Lumped Model
,”
Int. J. Rob. Autom.
,
17
(
1
), pp.
17
27
.
4.
Shieh
,
S.
,
Tsai
,
L.
,
Azarm
,
S.
, and
Tits
,
A.
,
1996
, “
Multiobjective Optimization of a Leg Mechanism With Various Spring Configurations for Force Reduction
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
179
185
.10.1115/1.2826867
5.
Siegwart
,
R.
, and
Nourbakhsh
,
I. R.
,
2004
,
Introduction to Autonomous Mobile Robotos
,
MIT Press
,
Cambridge
, USA.
6.
Park
,
I.
,
Kim
,
J.
,
Lee
,
J.
, and
Oh
,
J.
,
2007
, “
Mechanical Design of the Humanoid Robot Platform, HUBO
,”
Adv. Rob.
,
21
(
11
), pp.
1305
1322
.10.1163/156855307781503781
7.
Lohmeier
,
S.
,
Buschmann
,
T.
, and
Ulbrich
,
H.
,
2009
, “
Humanoid Robot Lola
,”
IEEE International Conference on Robotics and Automation
, Vol.
1
, No. 7, pp.
2516
2521
.
8.
Pfeiffer
,
F.
,
Loffler
,
K.
, and
Gienger
,
M.
,
2002
, “
The Concept of Jogging Johnnie
,”
IEEE International Conference on Robotics and Automation
, Washington, DC, Vol.
3
, pp.
3129
3135
.10.1109/ROBOT.2002.1013708
9.
Kaneko
,
K.
,
Kanehiro
,
F.
,
Morisawa
,
M.
,
Akachi
,
K.
,
Miyamori
,
G.
,
Hayashi
,
A.
, and
Kanehira
,
N.
,
2011
, “
Humanoid Robot Hrp-4-Humanoid Robotics Platform With Lightweight and Slim Body
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
4400
4407
.
10.
Hirose
,
M.
, and
Ogawa
,
K.
,
2007
, “
Honda Humanoid Robots Development
,”
Philos. Trans. R. Soc. Ser. A
,
365
(
1850
), pp.
11
19
.10.1098/rsta.2006.1917
11.
Etoundi
,
A. C.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2011
, “
A Bio-Inspired Condylar Hinge Joint for Mobile Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
4042
4047
.10.1109/IROS.2011.6094924
12.
Etoundi
,
A. C.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2012
, “
A Bio-Inspired Condylar Knee Joint for Leg Amputees and for Knee Implants
,”
Design and Nature VI
,
160
(
1
), pp.
23
34
.10.2495/DN12
13.
Goodfellow
,
J.
, and
O'connor
,
J.
,
1978
, “
Mechanics of the Knee and Prosthesis Design
,”
J. Bone Jt. Surg., Br. Vol.
,
60
(
3
), pp.
358
369
.
14.
Hsu
,
Y.
,
Hung
,
Y.
, and
Yin
,
J.
,
2006
, “
Design of a Novel Total Knee Prosthesis Using Triz
,”
J. Med. Biol. Eng.
,
26
(
4
), pp.
177
185
.
15.
Fu
,
F. H.
,
Harner
,
C. D.
,
Johnson
,
D. L.
,
Miller
,
M. D.
, and
Woo
,
S. L. Y.
,
1993
, “
Biomechanics of Knee Ligaments Basic Concepts and Clinical Application
,”
J. Bone Jt. Surg.
,
75
(
11
), pp.
1716
1727
.
16.
Montgomery
,
S. C.
,
Moorehead
,
J. D.
,
Davidson
,
J. S.
,
Lowe
,
D.
, and
Dangerfield
,
P. H.
,
1998
, “
A New Technique for Measuring the Rotational Axis Pathway of a Moving Knee
,”
The Knee
,
5
(
4
), pp.
289
295
.10.1016/S0968-0160(97)10029-1
17.
Rajendran
,
K.
,
1985
, “
Mechanism of Locking at the Knee-Joint
,”
J. Anat.
,
143
(
5
), pp.
189
194
.
18.
Wilson
,
D. R.
,
Feikes
,
J. D.
, and
O'connor
,
J. J.
,
1998
, “
Ligaments and Articular Contact Guide Passive Knee Flexion
,”
J. Biomech.
,
31
(
12
), pp.
1127
1136
.10.1016/S0021-9290(98)00119-5
19.
Moglo
,
K. E.
, and
Shirazi-Adl
,
A.
,
2005
, “
Cruciate Coupling and Screw-Home Mechanism in Passive Knee Joint During Extension-Flexion
,”
J. Biomech.
,
38
(
5
), pp.
1075
1083
.10.1016/j.jbiomech.2004.05.033
20.
Wilson
,
D. R.
,
Feikes
,
J. D.
,
Zavatsky
,
A. B.
, and
O'connor
,
J. J.
,
2000
, “
The Components of Passive Knee Movement Are Coupled to Flexion Angle
,”
J. Biomech.
,
33
(
4
), pp.
465
473
.10.1016/S0021-9290(99)00206-7
21.
Imam
,
M. H.
, and
Alshihri
,
M.
,
1996
, “
Optimum Topology of Structural Supports
,”
Comput. Struct.
,
61
(
1
), pp.
147
154
.10.1016/0045-7949(96)00087-9
22.
Wang
,
D.
,
2006
, “
Optimal Design of Structural Support Positions for Minimizing Maximal Bending Moment
,”
Finite Elements Anal. Des.
,
43
(
2
), pp.
95
102
.10.1016/j.finel.2006.07.004
23.
Fukunaga
,
M.
,
Kawanoya
,
J.
, and
Hirokawa
,
S.
,
2011
, “
Control of Femoral Rollback of Ps Knee Prosthesis through Slip Ratio
,”
Tribol. Online
,
6
(
1
), pp.
32
35
.10.2474/trol.6.32
24.
Jeanneau
,
A.
,
Herder
,
J. L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2004
, “
A Compliant Rolling Contact Joint and Its Application in a 3-Dof Planar Parallel Mechanism With Kinematic Analysis
,” ASME, pp.
689
698
.
25.
Sancisi
,
N.
, and
Parenti-Castelli
,
V.
,
2011
, “
A New Kinematic Model of the Passive Motion of the Knee Inclusive of the Patella
,”
ASME J. Mech. Rob.
,
3
(
4
), pp.
658
665
.10.1115/1.4004890
26.
Sands
,
D.
,
Pérez Gracia
,
A.
,
Mccormack
,
J.
, and
Wolbrecht
,
E. T.
,
2011
,
Design Method for a Reconfigurable Mechanism for Finger Rehabilitation
,
ACTA Press
,
Cambridge
, pp.
1
8
.
27.
Mcdonald
,
M.
, and
Agrawal
,
S. K.
,
2010
, “
Design of a Bio-Inspired Spherical Four-Bar Mechanism for Flapping-Wing Micro Air-Vehicle Applications
,”
Trans. ASME J. Mech. Rob.
,
2
(
2
), pp.
945
953
.10.1115/1.4001460
28.
Al-Smadi
,
Y. M.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2008
, “
Planar Four-Bar Path Generation With Static Structural Conditions
,”
ASME J. Mech. Rob.
,
1
(
3
),
p. 031009
.10.1115/1.3147191
29.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, New Jersey
.
30.
Su
,
H. J.
, and
Mccarthy
,
J. M.
,
2007
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
.10.1115/1.2757192
31.
Liu
,
X. J.
, and
Wang
,
J. S.
,
2007
, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1210
1224
.10.1016/j.mechmachtheory.2006.08.002
32.
Liu
,
X. J.
,
Wang
,
J. S.
, and
Gao
,
F.
,
2000
, “
Performance Atlases of the Workspace for Planar 3-Dof Parallel Manipulators
,”
Robotica
,
18
(
05
), pp.
563
568
.10.1017/S0263574700002678
33.
Kuntz
,
J. P.
,
1995
, “
Rolling Link Mechanisms
,” Ph.D. thesis, Delft University of Technology, Delft, Netherlands.
34.
Hallen
,
L. G.
, and
Lindahl
,
O.
,
1966
, “
The “Screw-Home” Movement in the Knee-Joint
,”
Acta Orthop.
,
37
(
1
), pp.
97
106
.10.3109/17453676608989407
35.
Frankel
,
V. H.
, and
Nordin
,
M.
,
1980
,
Basic Biomechanics of the Skeletal System
,
Lea & Febiger
,
Philadelphia
.
36.
Spiers
,
A.
,
2011
, private communication.
37.
Cross
,
M.
,
1996
, “
Clinical Terminology for Describing Knee Instability
,”
Sports Med. Arthrosc. Rev.
,
4
(
4
), pp.
313
318
.
38.
Al-Turaiki
,
M. H. S.
,
1986
,
The Human Knee: Functional Anatomy, Biomechanics, and Instabilities & Assessment Techniques
,
Joint Centre for Research in Prosthetics and Orthotics
,
Michigan
.
You do not currently have access to this content.