Two methods are presented to obtain optimal inverse kinematic solutions for redundant manipulators, according to two different performance criteria stipulated in the position and velocity levels. Both methods are analytical throughout except their final stages, which involve the numerical solution of a simplified minimization problem in a position-level case and the numerical integration of a set of differential equations derived optimally in a velocity-level case. Owing to the analytical nature of the methods, the multiple and singular configurations of the manipulator of concern can be identified readily and studied in detail. The methods are applicable for both serial and parallel redundant manipulators. However, they are demonstrated here for a humanoid manipulator with seven revolute joints. In the demonstrations, the first performance criterion is stipulated in the position level as the minimization of the potential energy. In that case, the optimal inverse kinematic solution is first obtained in the position level for a specified position of the hand. Then, it is compatibly extended to the velocity level for a specified motion of the hand. In the main analytical part of the solution, six of the joint variables are expressed in terms of the selected seventh one. Then, the optimal value of the selected joint variable is determined numerically by a simple one dimensional scanning. The second performance criterion is stipulated in the velocity level as the minimization of the kinetic energy. In that case, the optimal inverse kinematic solution is first obtained in the velocity level and then extended to the position level by integration. The main analytical part of the solution provides an optimally determined set of nonlinear differential equations. These differential equations are then integrated numerically in order to obtain the corresponding solution in the position level. However, the corrections needed to eliminate the numerical integration errors are still obtained analytically. The distinct optimal behaviors of the manipulator according to the mentioned criteria are also illustrated and compared for a duration, in which the hand moves in the same specified way.

## References

References
1.
Chiaverini
,
S.
,
Oriolo
,
G.
, and
Walker
,
I. D.
,
2008
, “
Kinematically Redundant Manipulators
,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer-Verlag
,
Heidelberg
, Berlin, Chap. 11.
2.
Benhabib
,
B.
,
Goldenberg
,
A. A.
, and
Fenton
,
R. G.
,
1985
, “
A Solution to the Inverse Kinematics of Redundant Manipulators
,”
American Control Conference
, June 19–21.
3.
,
K. K.
,
Long
,
M.
, and
Seraji
,
H.
,
1992
, “
Kinematic Analysis of 7-DOF Manipulators
,”
Int. J. Robot. Res.
,
11
(
5
), pp.
469
481
.10.1177/027836499201100504
4.
Long
,
G. L.
, and
Paul
,
R. P.
,
1992
, “
Singularity Avoidance and the Control of an Eight-Revolute-Joint Manipulator
,”
Int. J. Robot. Res.
,
11
(
6
), pp.
503
515
.10.1177/027836499201100601
5.
Cho
,
D. K.
,
Choi
,
B. W.
, and
Chung
,
M. J.
,
1995
, “
Optimal Conditions for Inverse Kinematics of a Robot Manipulator With Redundancy
,”
Robotica
,
13
(
1
), pp.
95
101
.10.1017/S0263574700017525
6.
Chiaverini
,
S.
,
1997
, “
Singularity-Robust Task-Priority Redundancy Resolution for Real-Time Kinematic Control of Robot Manipulators
,”
IEEE Trans. Rob. Autom.
,
13
(
3
), pp.
398
410
.10.1109/70.585902
7.
Nokleby
,
S. B.
, and
Podhorodeski
,
R. P.
,
2001
, “
Reciprocity-Based Resolution of Velocity Degeneracies (Singularities) for Redundant Manipulators
,”
Mech. Mach. Theory
,
36
(
3
), pp.
397
409
.10.1016/S0094-114X(00)00051-3
8.
Youngjin
Choi
,
2008
, “
Singularity-Robust Inverse Kinematics Using Lagrange Multiplier for Redundant Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
5
), p.
051009
.10.1115/1.2957632
9.
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1988
, “
A Solution Algorithm to the Inverse Kinematic Problem of Redundant Manipulators
,”
IEEE J. Rob. Autom.
,
4
(
4
), pp.
403
410
.10.1109/56.804
10.
,
M.
, and
Ho
,
L.
,
1991
, “
Collision Avoidance Control of Redundant Manipulators
,”
Mech. Mach. Theory
,
26
(
6
), pp.
603
611
.10.1016/0094-114X(91)90042-3
11.
Mitsi
,
S.
, and
Bouzakis
,
K. D.
,
1993
, “
Simulation of Redundant Manipulators for Collision Avoidance in Manufacturing and Assembly Environments
,”
Mech. Mach. Theory
,
28
(
1
), pp.
13
21
.10.1016/0094-114X(93)90042-T
12.
Agirrebeitia
,
J.
,
Aviles
,
R.
,
de Bustos
, I
. F.
, and
Ajuria
,
G.
,
2003
, “
Inverse Position Problem in Highly Redundant Multibody Systems in Environments With Obstacles
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1215
1235
.10.1016/S0094-114X(03)00068-5
13.
Oh
,
S.-Y.
,
Orin
,
D.
, and
Bach.
M.
,
2007
, “
An Inverse Kinematic Solution for Kinematically Redundant Robot Manipulators
,”
J. Rob. Syst.
,
1
(
3
), pp.
235
249
.10.1002/rob.4620010303
14.
Vandeweghe
,
J. M.
,
Ferguson
,
D.
, and
Srinivasa
,
S.
,
2007
, “
Randomized Path Planning for Redundant Manipulators Without Inverse Kinematics
,”
IEEE-RAS International Conference on Humanoid Robots
, Nov. 29–Dec. 01.
15.
Puga
,
J. P.
, and
Chiang
,
L. E.
,
2008
, “
Optimal Trajectory Planning for a Redundant Mobile Manipulator With Nonholonomic Constraints Performing Push-Pull Tasks
,”
Robotica
,
26
(
3
), pp.
385
394
.10.1017/S0263574707004031
16.
Jing
,
Z.
, and
Cheng
,
F.
,
2009
, “
On the Joint Velocity Jump During Fault Tolerant Operations for Manipulators With Multiple Degrees of Redundancy
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1201
1210
.10.1016/j.mechmachtheory.2008.08.005
17.
Kazerounian
,
K.
, and
,
A.
,
1988
, “
Redundancy Resolution of Serial Manipulators Based on Robot Dynamics
,”
Mech. Mach. Theory
,
23
(
4
), pp.
295
303
.10.1016/0094-114X(88)90022-5
18.
Ghosal
,
A.
, and
Desa
,
S.
,
1993
, “
Dynamical Resolution of Redundancy for Robot Manipulators
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
592
598
.10.1115/1.2919231
19.
Pueh
,
L. H.
,
1993
, “
Motions With Minimal Joint Torques for Redundant Manipulators
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
599
601
.10.1115/1.2919232
20.
Boudreau
,
R.
, and
Nokleby
,
S.
,
2012
, “
Force Optimization of Kinematically-Redundant Planar Parallel Manipulators Following a Desired Trajectory
,”
Mech. Mach. Theory
,
56
, pp.
138
155
.10.1016/j.mechmachtheory.2012.06.001
21.
Li
,
Y.
, and
Leong
,
S. H.
,
2004
, “
Kinematics Control of Redundant Manipulators Using a CMAC Neural Network Combined With a Genetic Algorithm
,”
Robotica
,
22
(
6
), pp.
611
621
.10.1017/S0263574704000414
22.
Ding
,
H.
,
Li
,
Y. F.
, and
Tso
,
S. K.
,
2000
, “
Dynamic Optimization of Redundant Manipulators in Worst Case Using Recurrent Neural Networks
,”
Mech. Mach. Theory
,
35
(
1
), pp.
55
70
.10.1016/S0094-114X(98)00091-3
23.
Nearchou
,
A. C.
,
1998
, “
Solving the Inverse Kinematics Problem of Redundant Robots Operating in Complex Environments via a Modified Genetic Algorithm
,”
Mech. Mach. Theory
,
33
(
3
), pp.
273
292
.10.1016/S0094-114X(97)00034-7
24.
Shimizu
,
M.
,
Kakuya
,
H.
,
Yoon
,
W. K.
,
Kitagaki
,
K.
, and
Kosuge
,
K.
,
2008
, “
Analytical Inverse Kinematic Computation for 7-DOF Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution
,”
IEEE Trans. Rob. Autom.
,
24
(
5
), pp.
1131
1142
.10.1109/TRO.2008.2003266
25.
Singh
,
G. K.
, and
Claassens
,
J.
,
2010
, “
Analytical Solution for the Inverse Kinematics of a Redundant 7-DOF Manipulator With Link Offsets
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
, Oct. 18–22.
26.
Miller
,
L. M.
,
Kim
,
H.
, and
Rosen
,
J.
,
2011
, “
Redundancy and Joint Limits of a Seven Degree of Freedom Upper Limb Exoskeleton
,”
33rd Annual International Conference of the IEEE EMBS
,
Boston, MA
, Aug. 30–Sept. 3.
27.
Kircanski
,
M. V.
, and
Petrovic
,
T. M.
,
1993
, “
Combined Analytical-Pseudoinverse Inverse Kinematic Solution for Simple Redundant Manipulators and Singularity Avoidance
,”
Int. J. Robot. Res.
,
12
(
2
), pp.
188
196
.10.1177/027836499301200207
28.
Abdel-Rahman
,
T. M.
,
1991
, “
A Generalized Practical Method for Analytic Solution of the Constrained Inverse Kinematics Problem of Redundant Manipulators
,”
Int. J. Robot. Res.
,
10
(
4
), pp.
382
395
.10.1177/027836499101000407
29.
Ghosal
,
A.
, and
Roth
,
B.
,
1988
, “
A New Approach for Kinematic Resolution of Redundancy
,”
Int. J. Robot. Res.
,
7
(
2
), pp.
22
35
.10.1177/027836498800700202
30.
Ozgoren
,
M. K.
,
1999
, “
Kinematic Analysis of a Manipulator With its Position and Velocity Related Singular Configurations
,”
Mech. Mach. Theory
,
34
, pp.
1075
1101
.10.1016/S0094-114X(98)00062-7
31.
Ozgoren
,
M. K.
,
2002
, “
Topological Analysis of Six-Joint Serial Manipulators and Their Inverse Kinematic Solutions
,”
Mech. Mach. Theory
,
37
, pp.
511
547
.10.1016/S0094-114X(02)00005-8
32.
Ozgoren
,
M. K.
,
2007
, “
Kinematic Analysis of Spatial Mechanical Systems Using Exponential Rotation Matrices
,”
ASME J. Mech. Des.
,
129
, pp.
1144
1152
.10.1115/1.2771233