This paper studies the direct geometrico-static problem (DGP) of underconstrained cable-driven parallel robots (CDPRs) with three cables. The task consists in determining the end-effector pose and the cable tensile forces when the cable lengths are assigned. The problem is challenging, because kinematics and statics are coupled, and they must be tackled simultaneously. An effective elimination procedure is proposed and a least-degree univariate polynomial free of spurious factors is obtained in the ideal governing the problem. This is proven to admit 156 solutions in the complex field. Several approaches for the efficient computation of the complete solution set are presented, including an eigenproblem formulation and homotopy continuation.

References

References
1.
Roberts
,
R. G.
,
Graham
,
T.
, and
Lippitt
,
T.
,
1998
, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Rob. Syst.
,
15
(
10
), pp.
581
597
.10.1002/(SICI)1097-4563(199810)15:10<581::AID-ROB4>3.0.CO;2-P
2.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
,
2000
, “
High-Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
,
18
(
1
), pp.
13
21
.10.1017/S0263574799002477
3.
Tadokoro
,
S.
,
Murao
,
Y.
,
Hiller
,
M.
,
Murata
,
R.
,
Kohkawa
,
H.
, and
Matsushima
,
T.
,
2002
, “
A Motion Base With 6-DOF by Parallel Cable Drive Architecture
,”
IEEE/ASME Trans. Mechatron.
,
7
(
2
), pp.
115
123
.10.1109/TMECH.2002.1011248
4.
Hiller
,
M.
,
Fang
,
S.
,
Mielczarek
,
S.
,
Verhoeven
,
R.
, and
Franitza
,
D.
,
2005
, “
Design, Analysis And Realization of Tendon-Based Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
4
), pp.
429
445
.10.1016/j.mechmachtheory.2004.08.002
5.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Vanini
,
S. A. S.
, and
Alasty
,
A.
,
2009
, “
Workspace Analysis of a Three DOF Cable-Driven Mechanism
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041005
.10.1115/1.3204255
6.
Landsberger
,
S. E.
,
1984
, “
Design and Construction of a Cable-Controlled, Parallel Link Manipulator
,” Master's thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge.
7.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2005
, “
A New Cable-Based Parallel Robot With Three Degrees of Freedom
,”
Multibody Syst. Dyn.
,
13
(
4
), pp.
371
383
.10.1007/s11044-005-3985-6
8.
Albus
,
J.
,
Bostelman
,
R.
, and
Dagalakis
,
N.
,
1993
, “
The NIST Robocrane
,”
J. Rob. Syst.
,
10
(
5
), pp.
709
724
.10.1002/rob.4620100509
9.
Su
,
Y. X.
,
Duan
,
B. Y.
,
Nan
,
R. D.
, and
Peng
,
B.
,
2001
, “
Development of a Large Parallel-Cable Manipulator for the Feed-Supporting System of a Next-Generation Large Radio Telescope
,”
J. Rob. Syst.
,
18
(
11
), pp.
633
643
.10.1002/rob.8102
10.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.10.1109/TRO.2006.878967
11.
Stump
,
E.
, and
Kumar
,
V.
,
2006
, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
.10.1115/1.2121741
12.
Ghasemi
,
A.
,
Eghtesad
,
M.
, and
Farid
,
M.
,
2009
, “
Workspace Analysis for Planar and Spatial Redundant Cable Robots
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
044502
.10.1115/1.3211026
13.
Diao
,
X.
, and
Ma
,
O.
,
2009
, “
Force-Closure Analysis of 6-DOF Cable Manipulators With Seven or More Cables
,”
Robotica
,
27
(
2
), pp.
209
215
.10.1017/S0263574708004591
14.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011010
.10.1115/1.4000558
15.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.10.1109/TRO.2010.2090064
16.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S.
,
2011
, “
Wrench-Closure Workspace Generation for Cable Driven Parallel Manipulators Using a Hybrid Analytical-Numerical Approach
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071004
.10.1115/1.4004222
17.
Azizian
,
K.
, and
Cardou
,
P.
,
2012
, “
The Dimensional Synthesis of Planar Parallel Cable-Driven Mechanisms Through Convex Relaxations
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031011
.10.1115/1.4006952
18.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
303
310
.10.1115/1.2114890
19.
Surdilovic
,
D.
,
Radojicic
,
J.
, and
Krüger
,
J.
,
2013
, “
Geometric Stiffness Analysis of Wire Robots: A Mechanical Approach
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin Heidelberg
, pp.
389
404
.
20.
Merlet
,
J.-P.
,
2004
, “
Analysis of the Influence of Wires Interference on the Workspace of Wire Robots
,”
On Advances in Robot Kinematics
,
J.
Lenarčič
and
C.
Galletti
, eds.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
211
218
.
21.
Perreault
,
S.
,
Cardou
,
P.
,
Gosselin
,
C. M.
, and
Otis
,
M. J.-D.
,
2010
, “
Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031016
.10.1115/1.4001780
22.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
,
2004
, “
Design and Workspace Analysis of a 6-6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
.10.1016/j.mechmachtheory.2004.02.010
23.
Rosati
,
G.
,
Zanotto
,
D.
, and
Agrawal
,
S. K.
,
2011
, “
On the Design of Adaptive Cable-Driven Systems
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021004
.10.1115/1.4003580
24.
Yamamoto
,
M.
,
Yanai
,
N.
, and
Mohri
,
A.
,
2004
, “
Trajectory Control of Incompletely Restrained Parallel-Wire-Suspended Mechanism Based on Inverse Dynamics
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
840
850
.10.1109/TRO.2004.829501
25.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2006
, “
On the Design of Cable-Suspended Planar Parallel Robots
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1021
1028
.10.1115/1.1903001
26.
Heyden
,
T.
, and
Woernle
,
C.
,
2006
, “
Dynamics and Flatness-Based Control of a Kinematically Undetermined Cable Suspension Manipulator
,”
Multibody Syst. Dyn.
,
16
(
2
), pp.
155
177
.10.1007/s11044-006-9023-5
27.
Michael
,
N.
,
Kim
,
S.
,
Fink
,
J.
, and
Kumar
,
V.
,
2009
, “
Kinematics and Statics of Cooperative Multi-Robot Aerial Manipulation With Cables
,” ASME 2009 International Design Engineering Technical Conferences, San Diego, Vol. 7, pp.
83
91
, Paper No. DETC2009–87677
.
28.
Jiang
,
Q.
, and
Kumar
,
V.
,
2010
, “
The Inverse Kinematics of 3-D Towing
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
and
M. M.
Stanišic`
, eds.,
Springer
,
Dordrecht
, pp.
321
328
.
29.
Jiang
,
Q.
, and
Kumar
,
V.
,
2010
, “
The Direct Kinematics of Objects Suspended From Cables
,” ASME 2010 International Design Engineering Technical Conferences, Montreal, Canada, Vol. 2, pp.
193
202
, Paper No. DETC2010–28036
.
30.
Collard
,
J.-F.
, and
Cardou
,
P.
,
2013
, “
Computing the Lowest Equilibrium Pose of a Cable-Suspended Rigid Body
,”
Optim. Eng.
, (in press).10.1007/s11081-012-9191-5
31.
Morizono
,
T.
,
Kurahashi
,
K.
, and
Kawamura
,
S.
,
1998
, “
Analysis and Control of a Force Display System Driven by Parallel Wire Mechanism
,”
Robotica
,
16
(
5
), pp.
551
563
.10.1017/S0263574798000551
32.
Surdilovic
,
D.
,
Zhang
,
J.
, and
Bernhardt
,
R.
,
2007
, “
STRING-MAN: Wire-Robot Technology for Safe, Flexible and Human-Friendly Gait Rehabilitation
,” Proceedings of the 2007 IEEE International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, pp.
446
453
.
33.
Rosati
,
G.
,
Gallina
,
P.
, and
Masiero
,
S.
,
2007
, “
Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
4
), pp.
560
569
.10.1109/TNSRE.2007.908560
34.
Merlet
,
J.-P.
, and
Daney
,
D.
,
2010
, “
A Portable, Modular Parallel Wire Crane for Rescue Operations
,” Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, pp.
2834
2839
.
35.
Gobbi
,
M.
,
Mastinu
,
G.
, and
Previati
,
G.
,
2011
, “
A Method for Measuring the Inertia Properties of Rigid Bodies
,”
Mech. Syst. Signal Process.
,
25
(
1
), pp.
305
318
.10.1016/j.ymssp.2010.09.004
36.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2010
, “
Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
and
M. M.
Stanišic`
, eds.,
Springer
,
Dordrecht
, pp.
309
319
.
37.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.10.1109/TRO.2012.2217795
38.
Merlet
,
J.-P.
,
2013
, “
Wire-Driven Parallel Robot: Open Issues
,”
Romansy 19 − Robot Design, Dynamics and Control
,
V.
Padois
,
P.
Bidaud
, and
O.
Khatib
, eds.,
Springer
,
Vienna
, pp.
3
10
.
39.
McCarthy
,
J. M.
,
2011
, “
21st Century Kinematics: Synthesis, Compliance, and Tensegrity
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
020201
.10.1115/1.4003181
40.
Carricato
,
M.
,
2013
, “
Inverse Geometrico-Static Problem of Under-Constrained Cable-Driven Parallel Robots With Three Cables
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041002
.10.1115/1.4024291
41.
Carricato
,
M.
,
Abbasnejad
,
G.
, and
Walter
,
D.
,
2012
, “
Inverse Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots With Four Cables
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds.,
Springer
,
Dordrecht
, pp.
365
372
.
42.
Carricato
,
M.
, and
Abbasnejad
,
G.
,
2013
, “
Direct Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots With 4 Cables
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin Heidelberg
, pp.
269
285
.
43.
Abbasnejad
,
G.
, and
Carricato
,
M.
,
2013
, “
Direct Geometrico-Static Problem of Underconstrained Cable-Driven Parallel Robots With 5 Cables
,” Proceedings of the 6th International Workshop on Computational Kinematics, Barcelona, Spain.
44.
Raghavan
,
M.
, and
Roth
,
B.
,
1995
, “
Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators
,”
ASME J. Mech. Des.
,
117
(
2B
), pp.
71
79
.10.1115/1.2836473
45.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2011
, “
Direct Geometrico-Static Problem of Under-Constrained Cable-Driven Parallel Robots With Three Cables
,” 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp.
3011
3017
.
46.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics, Dover Publications
,
New York
.
47.
Morgan
,
A.
, and
Sommese
,
A.
,
1987
, “
A Homotopy for Solving General Polynomial Systems That Respects m-Homogeneous Structures
,”
Appl. Math. Comput.
,
24
(
2
), pp.
101
113
.10.1016/0096-3003(87)90063-4
48.
Morgan
,
A.
, and
Sommese
,
A.
,
1987
, “
Computing all Solutions to Polynomial Systems Using Homotopy Continuation
,”
Appl. Math. Comput.
,
24
(
2
), pp.
115
138
.10.1016/0096-3003(87)90064-6
49.
Wampler
,
C. W.
,
1992
, “
Bezout Number Calculations for Multi-Homogeneous Polynomial Systems
,”
Appl. Math. Comput.
,
51
(
2–3
), pp.
143
157
.10.1016/0096-3003(92)90070-H
50.
Merlet
,
J.-P.
,
2006
.
Parallel Robots
,
Springer
,
Dordrecht
.
51.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
2000
, “
A Gröbner-Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
431
438
.10.1115/1.1290395
52.
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2005
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific Publishing
,
Singapore
.
53.
Cox
,
D.
,
Little
,
J.
, and
O'Shea
,
D.
,
2007
,
Ideals, Varieties, and Algorithms
,
Springer
,
New York
.
54.
Faugère
,
J. C.
,
Gianni
,
P.
,
Lazard
,
D.
, and
Mora
,
T.
,
1993
, “
Efficient Computation of Zero-Ddimensional Gröbner Bases by Change of Ordering
,”
J. Symb. Comput.
,
16
(
4
), pp.
329
344
.10.1006/jsco.1993.1051
55.
Möller
,
H. M.
,
1998
, “
Gröbner Bases and Numerical Analysis
,”
Gröbner Bases and Applications
, Vol. 251 of London Mathematical Society Lecture Note Series,
B.
Buchberger
and
F.
Winkler
, eds.,
Cambridge University Press
,
Cambridge
, pp.
159
178
.
56.
Corless
,
R. M.
,
1996
, “
Gröbner Bases and Matrix Eigenproblems
,”
ACM SIGSAM Bull.
,
30
(
4
), pp.
26
32
.10.1145/242961.242968
57.
Manocha
,
D.
, and
Krishnan
,
S.
,
1996
, “
Solving Algebraic Systems Using Matrix Computations
,”
ACM SIGSAM Bull.
,
30
(
4
), pp.
4
21
.10.1145/242961.242965
58.
Higham
,
N.
,
Mackey
,
D.
, and
Tisseur
,
F.
,
2006
, “
The Conditioning of Linearizations of Matrix Polynomials
,”
SIAM J. Matrix Anal. Appl.
,
28
(
4
), pp.
1005
1028
.10.1137/050628283
59.
Higham
,
N.
,
Li
,
R.-C.
, and
Tisseur
,
F.
,
2007
, “
Backward Error of Polynomial Eigenproblems Solved by Linearization
,”
SIAM J. Matrix Anal. Appl.
,
29
(
4
), pp.
1218
1241
.10.1137/060663738
60.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
, “
bertini: Software for Numerical Algebraic Geometry
,” Available at: http://bertini.nd.edu
61.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1989
, “
Coefficient-Parameter Polynomial Continuation
,”
Appl. Math. Comput.
,
29
(
2
), pp.
123
160
.10.1016/0096-3003(89)90099-4
62.
Abbasnejad
,
G.
, and
Carricato
,
M.
,
2012
, “
Real Solutions of the Direct Geometrico-Static Problem of Under-Constrained Cable-Driven Parallel Robots With 3 Cables: A Numerical Investigation
,”
Meccanica
,
47
(
7
), pp.
1761
1773
.10.1007/s11012-012-9552-3
63.
Merlet
,
J.-P.
,
2009
, “
Interval Analysis for Certified Numerical Solution of Problems in Robotics
,”
Int. J. Appl. Math. Comput. Sci.
,
19
(
3
), pp.
399
412
.10.2478/v10006-009-0033-3
64.
Berti
,
A.
,
Merlet
,
J.-P.
, and
Carricato
,
M.
,
2013
, “
Solving the Direct Geometrico-Static Problem of 3-3 Cable-Driven Parallel Robots by Interval Analysis: Preliminary Results
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin Heidelberg
, pp.
251
268
.
65.
Dietmaier
,
P.
,
1998
, “
The Stewart-Gough Platform of General Geometry can have 40 Real Postures
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarčič
and
M. L.
Husty
, eds.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
7
16
.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.