This paper constructs a separable closed-form solution to the robot-world/hand-eye calibration problem AX = YB. Qualifications and properties that determine the uniqueness of X and Y as well as error metrics that measure the accuracy of a given X and Y are given. The formulation of the solution involves the Kronecker product and the singular value decomposition. The method is compared with existing solutions on simulated data and real data. It is shown that the Kronecker method that is presented in this paper is a reliable and accurate method for solving the robot-world/hand-eye calibration problem.
Issue Section:
Research Papers
References
1.
Shah
, M.
, Eastman
, R. D.
, and Hong
, T.
, 2012
, “An Overview of Robot-Sensor Calibration Methods for Evaluation of Perception Systems
,” Proceedings of the Workshop on Performance Metrics for Intelligent Systems, PerMIS'12, ACM
, pp. 15
–20
.2.
Strobl
, K.
, and Hirzinger
, G.
, 2006
, “Optimal Hand-Eye Calibration
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp. 4647
–4653
.3.
Remy
, S.
, Dhome
, M.
, Lavest
, J.
, and Daucher
, N.
, 1997
, “Hand-Eye Calibration
,” International Conference on Intelligent Robots and Systems, (IROS)
, Vol. 2
, pp. 1057
–1065
.4.
Dornaika
, F.
, and Horaud
, R.
, 1998
, “Simultaneous Robot-World and Hand-Eye Calibration
,” IEEE Trans. Rob. Autom.
, 14
(4
), pp. 617
–622
.10.1109/70.7042335.
Hirsh
, R. L.
, DeSouza
, G. N.
, and Kak
, A. C.
, 2001
, “An Iterative Approach to the Hand-Eye and Base-World Calibration Problem
,” International Conference on Robotics and Automation (ICRA)
, Vol. 3
, pp. 2171
–2176
.6.
Kim
, S.-J.
, Jeong
, M.-H.
, Lee
, J.-J.
, Lee
, J.-Y.
, Kim
, K.-G.
, You
, B.-J.
, and Oh
, S.-R.
, 2010
, “Robot Head-Eye Calibration Using the Minimum Variance Method
,” International Conference on Robotics and Biomimetics (ROBIO), IEEE
, pp. 1446
–1451
.7.
Yang
, G.
, Chen
, I.-M.
, Yeo
, S. H.
, Lim
, W. K.
, 2002
, “Simultaneous Base and Tool Calibration for Self-Calibrated Parallel Robots
,” Robotica
, 20
(4
), pp. 367
–374
. Available at: http://155.69.254.10/users/risc/Pub/Conf/00-c-icarcv-simcal.pdf8.
Zhuang
, H.
, Roth
, Z. S.
, and Sudhakar
, R.
, 1994
, “Simultaneous Robot/World and Tool/Flange Calibration by Solving Homogeneous Transformation Equations of the Form AX = YB
,” IEEE Trans. Rob. Autom.
, 10
(4
), pp. 549
–554
.10.1109/70.3131059.
Li
, A.
, Wang
, L.
, and Wu
, D.
, 2010
, “Simultaneous Robot-World and Hand-Eye Calibration Using Dual-Quaternions and Kronecker Product
,” Inter. J. Phys. Sci.
, 5
(10
), pp. 1530
–1536
.10.
Ernst
, F.
, Richter
, L.
, Matthäus
, L.
, Martens
, V.
, Bruder
, R.
, Schlaefer
, A.
, and Schweikard
, A.
, 2012
, “Non-Orthogonal Tool/Flange and Robot/World Calibration
,” Int. J. Med. Rob. Comput. Assist. Surg.
, 8
(4
), pp. 407
–420
.10.1002/rcs.142711.
Shiu
, Y. C.
, and Ahmad
, S.
, 1989
, “Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX=XB
,” IEEE Trans. Rob. Autom.
, 5
(1
), pp. 16
–29
.10.1109/70.8801412.
Tsai
, R. Y.
, and Lenz
, R. K.
, 1989
, “A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration
,” IEEE Trans. Rob. Autom.
, 5
(3
), pp. 345
–358
.10.1109/70.3477013.
Wang
, C.-C.
, 1992
, “Extrinsic Calibration of a Vision Sensor Mounted on a Robot
,” IEEE Trans. Rob. Autom.
, 8
, pp. 161
–175
.10.1109/70.13427114.
Park
, F. C.
, and Martin
, B. J.
, 1994
, “Robot Sensor Calibration: Solving AX = XB on the Euclidean Group
,” IEEE Trans. Rob. Autom.
, 10
(5
), pp. 717
–721
.10.1109/70.32657615.
Chou
, J. C.
, and Kamel
, M.
, 1991
, “Finding the Position and Orientation of a Sensor on a Robot Manipulator Using Quaternions
,” Int. J. Robot. Res.
, 10
(3
), pp. 240
–254
.10.1177/02783649910100030516.
Zhuang
, H.
, Roth
, Z.
, Shiu
, Y.
, and Ahmad
, S.
, 1991
, “Comments on” Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX = XB” [With Reply]
,” IEEE Trans. Rob. Autom.
, 7
(6
), pp. 877
–878
.10.1109/70.10539817.
Horaud
, R.
, and Dornaika
, F.
, 1995
, “Hand-Eye Calibration
,” Int. J. Robot. Res.
, 14
(3
), pp. 195
–210
.10.1177/02783649950140030118.
Lu
, Y.-C.
, and Chou
, J. C.
, 1995
, “Eight-Space Quaternion Approach for Robotic Hand-Eye Calibration
,” IEEE International Conference on Systems, Man and Cybernetics
, 4
, pp. 3316
–3321
.19.
Daniilidis
, K.
, and Bayro-Corrochano
, E.
, 1996
, “The Dual Quaternion Approach to Hand-Eye Calibration
,” Proceedings of the 13th International Conference on Pattern Recognition
, Vol. 1
, pp. 318
–322
.20.
Daniilidis
, K.
, 1999
, “Hand-Eye Calibration Using Dual Quaternions
,” Int. J. Robot. Res.
, 18
(3
), pp. 286
–298
.10.1177/0278364992206621321.
Malti
, A.
, and Barreto
, J. P.
, 2010
, “Robust Hand-Eye Calibration for Computer Aided Medical Endoscopy
,” International Conference on Robotics and Automation (ICRA)
, pp. 5543
–5549
.22.
Chen
, H. H.
, 1991
, “A Screw Motion Approach to Uniqueness Analysis of Head-Eye Geometry
,” IEEE Proceedings of Computer Vision and Pattern Recognition (CVPR)
, pp. 145
–151
.23.
Andreff
, N.
, Horaud
, R.
, and Espiau
, B.
, 2001
, “Robot Hand-Eye Calibration Using Structure From Motion
,” Int. J. Robot. Res.
, 20
(3
), pp. 228
–248
.10.1177/0278364012206737224.
Laub
, A. J.
, 2004
, Matrix Analysis for Scientists and Engineers
, Society for Industrial and Applied Mathematics
, Philadelphia, PA
.25.
Shah
, M.
, 2011
, “Comparing Two Sets of Corresponding Six Degree of Freedom Data
,” Comput. Vis. Image Underst.
, 115
(10
), pp. 1355
–1362
.10.1016/j.cviu.2011.05.00726.
Chang
, T.
, Hong
, T.
, Falco
, J.
, Shneier
, M.
, Shah
, M.
, and Eastman
, R.
, 2010
, “Methodology for Evaluating Static Six-Degree-of-Freedom (6DOF) Perception Systems
,” Proceedings of the 10th Performance Metrics for Intelligent Systems Workshop, PerMIS'10, ACM
, pp. 290
–297
.Copyright © 2013 by ASME
You do not currently have access to this content.