This paper introduces a new metamorphic parallel mechanism consisting of four reconfigurable rTPS limbs. Based on the reconfigurability of the reconfigurable Hooke (rT) joint, the rTPS limb has two phases while in one phase the limb has no constraint to the platform, in the other it constrains the spherical joint center to lie on a plane. This results in the mechanism to have ability of reconfiguration between different topologies with variable mobility. Geometric constraint equations of the platform rotation matrix and translation vector are set up based on the point-plane constraint, which reveals the bifurcated motion property in the topology with mobility 2 and the geometric condition with mobility change in altering to other mechanism topologies. Following this, a unified kinematics limb modeling is proposed considering the difference between the two phases of the reconfigurable rTPS limb. This is further applied for the mechanism modeling and both the inverse and forward kinematics is analytically solved by combining phases of the four limbs covering all the mechanism topologies. Based on these, a unified singularity modeling is proposed by defining the geometric constraint forces and actuation forces in the Jacobian matrix with their change in the variable topologies in terms of constraint screws. Analysis of workspace with singularity distribution is carried out using this model and corresponding singularity loci are obtained with special singular configurations illustrated.

References

References
1.
Merlet
,
J. P.
,
2008
,
Parallel Robots
,
2nd ed.
,
Springer
,
New York
.
2.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
, p.
041007
.10.1115/1.3211023
3.
Dai
,
J. S.
, and
Rees
,
J. J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.10.1115/1.2829470
4.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
V.
Parenti-Castelli
, eds.,
Kluwer
,
Dordrecht
, pp.
359
368
.
5.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2000
, “
Ortho-Planar Mechanisms
,”
Proceedings of 26th Biennial Mechanisms and Robotics Conference
, Baltimore, MD, Sept., Paper No. DETC2000/MECH-14193.
6.
Chen
, I
. M.
,
Li
,
S. H.
, and
Cathala
,
A.
,
2003
, “
Mechatronic Design and Locomotion of Amoebot—A Metamorphic Underwater Vehicle
,”
J. Rob. Syst.
,
20
(
6
), pp.
307
314
.10.1002/rob.10089
7.
Liu
,
C.
, and
Yang
,
T.
,
2004
, “
Essence and Characteristics of Metamorphic Mechanisms and Their Metamorphic Ways
,”
Proceedings of 11th World Congress in Mechanism and Machine Science
,
Tianjing
,
China
, April, pp.
1285
1288
.
8.
Dai
,
J. S.
, and
Rees
,
J. J.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.10.1115/1.1866159
9.
Yan
,
H. S.
, and
Kuo
,
C. H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.10.1115/1.2166854
10.
Kuo
,
C. H.
, and
Yan
,
H. S.
,
2007
, “
On the Mobility and Configuration Singularity of Mechanisms With Variable Topologies
,”
ASME J. Mech. Des.
,
129
, pp.
617
624
.10.1115/1.2717230
11.
Fanghella
,
P.
,
Galletti
,
C.
, and
Giannotti
,
E.
,
2006
, “
Parallel Robots that Change Their Group of Motion
,”
Advances in Robot Kinematics
,
Springer
,
New York
, pp.
49
56
.
12.
Xi
,
F.
,
Xu
,
Y.
, and
Xiong
,
G.
,
2006
, “
Design and Analysis of a Re-Configurable Parallel Robot
,”
Mech. Mach. Theory
,
41
, pp.
191
211
.10.1016/j.mechmachtheory.2005.04.007
13.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
7
), pp.
595
601
.10.1115/1.2717228
14.
Dai
,
J. S.
, and
Wang
,
D.
,
2007
, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1191
1197
.10.1115/1.2771576
15.
Zhang
,
L. P.
,
Wang
,
D. L.
, and
Dai
,
J. S.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
130
, p.
072303
.10.1115/1.2900719
16.
Zhang
,
K. T.
,
Dai
,
J. S.
, and
Fang
,
Y. F.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.10.1115/1.4002691
17.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
.10.1016/j.mechmachtheory.2010.08.004
18.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Change Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
),
051001
.10.1115/1.4003920
19.
Wampler
,
C. W.
,
2006
, “
On a Rigid Body Subject to Point-Plane Constraints
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
151
158
.10.1115/1.2120787
20.
Selig
,
J. M.
,
2011
, “
On the Geometry of Point-Plane Constraints on Rigid-Body Displacements
,”
Acta Appl. Math.
,
116
(
2
), pp.
133
155
.10.1007/s10440-011-9634-6
21.
Karouia
,
M.
, and
Hervé
,
J. M.
,
2002
, “
A Family of Novel Orientational 3-DOF Parallel Robots
,”
Proceedings of 14th CISM-IFToMM RoManSy
, Springer, pp.
359
368
.
22.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2009
, “
Uncoupled 6-DOF Tripods Via Group Theory
,”
Proceedings of the 5th International Workshop on Computational Kinematics
,
A.
Kecskeméthy
and
A.
Müller
, eds. Springer, pp.
201
208
.
23.
Li
,
Q.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Rob. Autom.
,
26
(
3
), pp.
401
410
.10.1109/TRO.2010.2047528
24.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob. Autom.
,
25
(
1
), pp.
158
164
.10.1109/TRO.2008.2008737
25.
Gogu
,
G.
,
2011
, “
Maximally Regular T2R1-Type Parallel Manipulators With Bifurcated Spatial Motion
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011010
.10.1115/1.4003180
26.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Washington, D.C., pp.
496
502
.
27.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities as C-Space Singularities
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
F.
Thomas
, eds.,
Kluwer
,
Dordrecht
, pp.
183
192
.
28.
Jeong
,
Y. K.
,
Lee
,
D. J.
,
Kim
,
K. H.
, and
Park
,
J. O.
,
2000
, “
A Wearable Robotic Arm With High Force-Reflection Capability
,”
Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communication
, Sept. 27–29, Osaka, Japan, pp.
411
416
.
29.
Grosch
,
P.
,
Di Gregorio
,
R.
,
López
,
J.
, and
Thomas
,
F.
,
2010
, “
Motion Planning for a Novel Reconfigurable Parallel Manipulator With Lockable Revolute Joints
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation
, Anchorage, Alaska, May 3–8.
30.
Liao
,
Q. Z.
,
Seneviratne
,
L. D.
, and
Earles
,
S. W. E.
,
1995
, “
Forward Positional Analysis for the General 4–6 In-Parallel Platform
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
209
(
1
), pp.
55
67
.10.1243/PIME_PROC_1995_209_122_02
31.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
,
Wei
,
S. M.
, and
Seneviratne
,
L. D.
,
2009
, “
Forward Displacement Analysis of the General 6-6 Stewart Mechanism Using Grobner Bases
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1640
1647
.10.1016/j.mechmachtheory.2009.01.008
32.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
33.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
, pp.
566
572
.10.1115/1.2826720
34.
Merlet
,
J. P.
,
2007
, “
A Formal-Numerical Approach for Robust In-Workspace Singularity Detection
,”
IEEE Trans. Rob. Autom.
,
23
(
3
), pp.
393
402
.10.1109/TRO.2007.898981
35.
Kong
,
X.
, and
Gosselin
,
C.
,
2001
, “
Uncertainty Singularity Analysis of Parallel Manipulators Based on the Instability Analysis of Structures
,”
Int. J. Robot. Res.
,
20
(
11
), pp.
847
856
.10.1177/02783640122068146
36.
Tsai
,
L. W.
,
1998
, “
The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws
,”
Adv. Robot Kinematics
, J. Lenarčič, M. L. Husty, eds., Kluwer, Dordrecht, pp.
327
336
.
37.
Hao
,
F.
, and
McCarthy
,
J. M.
,
1998
, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
,
15
(
1
), pp.
43
55
.10.1002/(SICI)1097-4563(199812)15:1<43::AID-ROB4>3.0.CO;2-S
38.
Merlet
,
J. P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.10.1177/027836498900800504
39.
Ben-Horin
,
P.
, and
Shoham
,
M.
,
2006
, “
Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann–Cayley Algebra
,”
IEEE Tran. Robotics
,
22
(
4
), pp.
577
590
.10.1109/TRO.2006.878958
40.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North-Holland
,
New York
.
You do not currently have access to this content.