This paper studies underconstrained cable-driven parallel robots (CDPRs) with three cables. A major challenge in the study of these robots is the intrinsic coupling between kinematics and statics, which must be tackled simultaneously. Effective elimination procedures are presented which provide the complete solution sets of the inverse geometrico-static problems (IGPs) with assigned orientation or position. In the former case, the platform orientation is given, whereas the platform position and the cable lengths and tensions must be computed. In the latter case, the platform position is known, whereas the platform orientation and the cable lengths and tensions are to be calculated. The described problems are proven to admit at the most 1 and 24 real solutions, respectively.

References

References
1.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2010
, “
Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
and
M. M.
Stanišic`
, eds.,
Springer
,
Dordrecht
, pp.
309
319
.
2.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.10.1109/TRO.2012.2217795
3.
Merlet
,
J.-P.
,
2013
, “
Wire-Driven Parallel Robot: Open Issues
,”
Romansy 19—Robot Design, Dynamics and Control
,
V.
Padois
,
P.
Bidaud
, and
O.
Khatib
, eds.,
Springer
,
Vienna
, pp.
3
10
.
4.
Albus
,
J.
,
Bostelman
,
R.
, and
Dagalakis
,
N.
,
1993
, “
The NIST Robocrane
,”
J. Rob. Syst.
,
10
(
5
), pp.
709
724
.10.1002/rob.4620100509
5.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
,
2000
, “
High-Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
,
18
(
1
), pp.
13
21
.10.1017/S0263574799002477
6.
Tadokoro
,
S.
,
Murao
,
Y.
,
Hiller
,
M.
,
Murata
,
R.
,
Kohkawa
,
H.
, and
Matsushima
,
T.
,
2002
, “
A Motion Base With 6-DOF by Parallel Cable Drive Architecture
,”
IEEE/ASME Trans. Mechatron.
,
7
(
2
), pp.
115
123
.10.1109/TMECH.2002.1011248
7.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
,
2004
, “
Design and Workspace Analysis of a 6-6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
.10.1016/j.mechmachtheory.2004.02.010
8.
Hiller
,
M.
,
Fang
,
S.
,
Mielczarek
,
S.
,
Verhoeven
,
R.
, and
Franitza
,
D.
,
2005
, “
Design, Analysis and Realization of Tendon-Based Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
4
), pp.
429
445
.10.1016/j.mechmachtheory.2004.08.002
9.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Vanini
,
S. A. S.
, and
Alasty
,
A.
,
2009
, “
Workspace Analysis of a Three DOF Cable-Driven Mechanism
,”
ASME J. Mech. Rob.
,
1
(
4
),
041005
.10.1115/1.3204255
10.
Rosati
,
G.
,
Zanotto
,
D.
, and
Agrawal
,
S. K.
,
2011
, “
On the Design of Adaptive Cable-Driven Systems
,”
ASME J. Mech. Rob.
,
3
(
2
),
021004
.10.1115/1.4003580
11.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.10.1109/TRO.2006.878967
12.
Stump
,
E.
, and
Kumar
,
V.
,
2006
, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
.10.1115/1.2121741
13.
Ghasemi
,
A.
,
Eghtesad
,
M.
, and
Farid
,
M.
,
2009
, “
Workspace Analysis for Planar and Spatial Redundant Cable Robots
,”
ASME J. Mech. Rob.
,
1
(
4
),
044502
.10.1115/1.3211026
14.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
),
011010
.10.1115/1.4000558
15.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.10.1109/TRO.2010.2090064
16.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S.
,
2011
, “
Wrench-Closure Workspace Generation for Cable Driven Parallel Manipulators Using a Hybrid Analytical-Numerical Approach
,”
ASME J. Mech. Des.
,
133
(
7
),
071004
.10.1115/1.4004222
17.
Azizian
,
K.
, and
Cardou
,
P.
,
2012
, “
The Dimensional Synthesis of Planar Parallel Cable-Driven Mechanisms Through Convex Relaxations
,”
ASME J. Mech. Rob.
,
4
(
3
),
031011
.10.1115/1.4006952
18.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
303
310
.10.1115/1.2114890
19.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Erratum: Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
11
), pp.
1366
.10.1115/1.2354439
20.
Surdilovic
,
D.
,
Radojicic
,
J.
, and
Krüger
,
J.
,
2013
, “
Geometric Stiffness Analysis of Wire Robots: A Mechanical Approach
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin Heidelberg
, pp.
389
404
.
21.
Wischnitzer
,
Y.
,
Shvalb
,
N.
, and
Shoham
,
M.
,
2008
, “
Wire-Driven Parallel Robot: Permitting Collisions Between Wires
,”
Int. J. Robot. Res.
,
27
(
9
), pp.
1007
1026
.10.1177/0278364908095884
22.
Perreault
,
S.
,
Cardou
,
P.
,
Gosselin
,
C. M.
, and
Otis
,
M. J.-D.
,
2010
, “
Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
3
),
031016
.10.1115/1.4001780
23.
Miermeister
,
P.
, and
Pott
,
A.
,
2012
, “
Auto Calibration Method for Cable-Driven Parallel Robots Using Force Sensors
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds.,
Springer
,
Dordrecht
, pp.
269
276
.
24.
Alexandre dit Sandretto
,
J.
,
Daney
,
D.
, and
Gouttefarde
,
M.
,
2013
, “
Calibration of a Fully-Constrained Parallel Cable-Driven Robot
,”
Romansy 19—Robot Design, Dynamics and Control
,
V.
Padois
,
P.
Bidaud
, and
O.
Khatib
, eds.,
Springer
,
Vienna
, pp.
77
84
.
25.
Notash
,
L.
,
2012
, “
Failure Recovery for Wrench Capability of Wire-Actuated Parallel Manipulators
,”
Robotica
,
30
(
6
), pp.
941
950
.10.1017/S0263574711001160
26.
Yamamoto
,
M.
,
Yanai
,
N.
, and
Mohri
,
A.
,
2004
, “
Trajectory Control of Incompletely Restrained Parallel-Wire-Suspended Mechanism Based on Inverse Dynamics
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
840
850
.10.1109/TRO.2004.829501
27.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2006
, “
On the Design of Cable-Suspended Planar Parallel Robots
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1021
1028
.10.1115/1.1903001
28.
Heyden
,
T.
, and
Woernle
,
C.
,
2006
, “
Dynamics and Flatness-Based Control of a Kinematically Undetermined Cable Suspension Manipulator
,”
Multibody Syst. Dyn.
,
16
(
2
), pp.
155
177
.10.1007/s11044-006-9023-5
29.
Michael
,
N.
,
Kim
,
S.
,
Fink
,
J.
, and
Kumar
,
V.
,
2009
, “
Kinematics and Statics of Cooperative Multi-Robot Aerial Manipulation With Cables
,”
ASME 2009 International Design Engineering Technical Conferences
, Vol.
7
, pp.
83
91
, Paper No. DETC2009–87677
.
30.
Jiang
,
Q.
, and
Kumar
,
V.
,
2010
, “
The Inverse Kinematics of 3-D Towing
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
and
M. M.
Stanišic`
, eds.,
Springer
,
Dordrecht
, pp.
321
328
.
31.
Jiang
,
Q.
, and
Kumar
,
V.
,
2013
, “
The Direct Kinematics of Objects Suspended From Cables,” ASME 2010 International Design Engineering Technical Conferences
, Vol.
2
, pp.
193
202
, Paper No. DETC2010–28036.
32.
Collard
,
J.-F.
, and
Cardou
,
P.
,
2013
, “
Computing the Lowest Equilibrium Pose of a Cable-Suspended Rigid Body
,”
Optim. Eng.
, pp. 1–20.10.1007/s11081-012-9191-5
33.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Springer
,
Dordrecht
.
34.
McCarthy
,
J. M.
,
2011
, “
21st Century Kinematics: Synthesis, Compliance, and Tensegrity
,”
ASME J. Mech. Rob.
,
3
(
2
),
020201
.10.1115/1.4003181
35.
Abbasnejad
,
G.
, and
Carricato
,
M.
,
2012
, “
Real Solutions of the Direct Geometrico-Static Problem of Under-Constrained Cable-Driven Parallel Robots With 3 Cables: A Numerical Investigation
,”
Meccanica
,
47
(
7
), pp.
1761
1773
.10.1007/s11012-012-9552-3
36.
Berti
,
A.
,
Merlet
,
J.-P.
, and
Carricato
,
M.
,
2013
, “
Solving the Direct Geometrico-Static Problem of 3-3 Cable-Driven Parallel Robots by Interval Analysis: Preliminary Results
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
251
268
.
37.
Carricato
,
M.
,
2013
, “
Direct Geometrico-Static Problem of Under-Constrained Cable-Driven Parallel Robots With Three Cables
,”
ASME J. Mech. Rob.
(accepted).10.1115/1.4024293
38.
Carricato
,
M.
,
Abbasnejad
,
G.
, and
Walter
,
D.
,
2012
, “
Inverse Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots With Four Cables
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds.,
Springer
,
Dordrecht
, pp.
365
372
.
39.
Carricato
,
M.
, and
Abbasnejad
,
G.
,
2013
, “
Direct Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots With 4 Cables
,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
269
285
.
40.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford
.
41.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover Publications
,
New York
.
42.
Salmon
,
G.
,
1964
,
Lessons Introductory to the Modern Higher Algebra
,
Chelsea Publishing Company
,
New York
.
43.
Raghavan
,
M.
, and
Roth
,
B.
,
1995
, “
Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators
,”
ASME J. Mech. Des.
,
117
(
2B
), pp.
71
79
.10.1115/1.2836473
44.
Manocha
,
D.
, and
Krishnan
,
S.
,
1996
, “
Solving Algebraic Systems Using Matrix Computations
,”
ACM SIGSAM Bull.
,
30
(
4
), pp.
4
21
.10.1145/242961.242965
45.
Cox
,
D.
,
Little
,
J.
, and
O'Shea
,
D.
,
2007
,
Ideals, Varieties, and Algorithms
,
Springer
,
New York
.
You do not currently have access to this content.