This paper seeks to extend the notion of polar decomposition (PD) from matrix algebra to dual-quaternion algebra. The goal is to obtain a simple, efficient and explicit method for determining the PD of spatial displacements in Euclidean three-space that belong to a special Euclidean Group known as SE(3). It has been known that such a decomposition is equivalent to the projection of an element of SE(3) onto SO(4) that yields hyper spherical displacements that best approximate rigid-body displacements. It is shown in this paper that a dual quaternion representing an element of SE(3) can be decomposed into a pair of unit quaternions, called double quaternion, that represents an element of SO(4). Furthermore, this decomposition process may be interpreted as the projection of a point in four-dimensional space onto a unit hypersphere. An example is provided to illustrate that the results obtained from this dual-quaternion based polar decomposition are same as those obtained from the matrix based polar decomposition.

References

References
1.
Inonu
,
I.
, and
Wigner
,
E.
,
1953
, “
On the Contraction of Groups and Their Representations
,”
Proc. Natl. Acad. Sci., U.S.A.
,
39
(
6
), pp.
510
524
.10.1073/pnas.39.6.510
2.
Saletan
,
E.
,
1961
, “
Contraction of Lie Groups
,”
J. Math. Phys.
,
2
(
1
), pp.
1
21
.10.1063/1.1724208
3.
McCarthy
,
J. M.
,
1983
, “
Planar and Spatial Rigid Body Motion as Special Cases of Spherical and 3-Spherical Motion
,”
ASME J. Mech., Transm., Autom.
,
105
, pp.
569
575
.10.1115/1.3267398
4.
Etzel
,
K.
, and
McCarthy
,
J. M.
,
1996
, “
A Metric for Spatial Displacements Using Biquaternions on SO(4)
,”
IEEE International Conference on Robotics and Automation
.
5.
Etzel
,
K.
, and
McCarthy
,
J. M.
,
1996
, “
Spatial Motion Interpolation in an Image Space of SO(4)
,”
Proceedings of 1996 ASME Mechanisms Conference
, Paper No. 96-DETC/MECH-1164.
6.
Ge
,
Q. J.
,
1998
, “
On the Matrix Realization of the Theory of Biquaternions
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
404
407
.10.1115/1.2829166
7.
Clifford
,
W. K.
,
1873
, “
Preliminary Sketch of Biquaternions
,”
Proc. London Math. Soc.
,
4
, pp.
381
395
.10.1112/plms/s1-4.1.381
8.
Tse
,
D. M.
, and
Larochelle
,
P. M.
,
2000
, “
Approximating Spatial Locations With Spherical Orientations for Spherical Mechanism Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
457
463
.10.1115/1.1289139
9.
Larochelle
,
P.
,
Murray
,
A.
, and
Angeles
,
J.
,
2007
, “
A Distance Metric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
883
886
.10.1115/1.2735640
10.
Larochelle
,
P.
,
2006
, “
A Polar Decomposition Based Displacement Metric for a Finite Region of SE(n)
,”
Advances in Robot Kinematics (ARK
),
B. R. J.
Lenarčič
, ed., Springer Verlag, The Netherlands, pp.
33
40
.
11.
Larochelle
,
P.
, and
Murray
,
A.
,
2005
, “
Projection Metrics for Rigid-Body Displacements
,” 2005 ASME International Design Engineering Technical Conferences.
12.
Belta
,
C.
, and
Kumar
,
V.
,
2002
, “
An SVD-Based Projection Method for Interpolation on SE(3)
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
334
345
.10.1109/TRA.2002.1019463
13.
Eberharter
,
J. K.
, and
Ravani
,
B.
,
2004
, “
Local Metrics for Rigid Body Displacements
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
805
812
.10.1115/1.1767816
14.
Study
,
E.
,
1903
,
Die Geometrie der Dynamen
,
Verlag Teubner
,
Leipzig
.
15.
Shoemake
,
K.
, and
Duff
,
T.
,
1992
, “
Matrix Animation and Polar Decomposition
,”
Graphics Interface’92
, pp.
258
264
.
16.
Yang
,
A. T.
,
1963
, “
Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms
,” Ph.D. dissertation, Columbia University, New York.
17.
Yang
,
A.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number and Quaternion Algebra to the Analysis of Spatial Linkages
,”
ASME J. Appl. Mech (Ser. E)
,
31
, pp.
300
308
.10.1115/1.3629601
18.
Radavelli
,
L.
,
Simoni
,
R.
,
De Pieri
,
E.
, and
Martins
,
D.
,
2012
, “
A Comparative Study of the Kinematics of Robots Manipulators by Denavit-Hartenberg and Dual Quaternion
,”
Mecánica Computacional, Multi-Body Systems
, Vol. XXXI(15), A. Cardona, P. H. Kohan, R. D. Quinteros, M. A. Storti, eds, Salta, Argentina, 13–16 November 2012, pp.
2833
2848
.
19.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2004
, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
425
435
.10.1115/1.1737378
20.
Kavan
,
L.
,
Collins
,
S.
,
Zara
,
J.
, and
O'Sullivan
,
C.
,
2008
, “
Geometric Skinning With Approximate Dual Quaternion Blending
,”
ACM Trans. Graph.
,
27
(
4
), pp.
1
23
.10.1145/1409625.1409627
21.
Ma
,
K.-x.
, and
Wang
,
H.-n.
,
2013
, “
Dual Quaternion Relative Position and Attitude Estimation Algorithm of Close Formation Flight Based on Vision
,”
Syst. Eng. Electron.
,
35
(
2
), pp.
391
396
.10.3969/j.issn.1001-506X.2013.02.27
22.
Yuanxin
,
W.
,
Xiaoping
,
H.
,
Meiping
,
W.
, and
Dewen
,
H.
,
2006
, “
Strapdown Inertial Navigation Using Dual Quaternion Algebra: Error Analysis
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
1
), pp.
259
266
.10.1109/TAES.2006.1603421
23.
Pham
,
H.-L.
,
Perdereau
,
V.
,
Adorno
,
B. V.
, and
Fraisse
,
P.
,
2010
, “
Position and Orientation Control of Robot Manipulators Using Dual Quaternion Feedback
,”
IROS'10 IEEE/RSJ International Conference on Intelligent Robots and Systems
.
24.
Wang
,
X.
, and
Yu
,
C.
,
2011
, “
Unit-Dual-Quaternion-Based PID Control Scheme for Rigid-Body Transformation
,”
Proceedings of 18th World Congress International Federation of Automatic Control
, pp.
9296
9301
.
25.
Han
,
D.-P.
,
Wei
,
Q.
, and
Li
,
Z.-X.
,
2008
, “
Kinematic Control of Free Rigid Bodies Using Dual Quaternions
,”
Int. J. Autom. Comput.
,
5
(
3
), pp.
319
324
.10.1007/s11633-008-0319-1
26.
Demir
,
S.
,
2007
, “
Matrix Realization of Dual Quaternionic Electromagnetism
,”
Cent. Eur. J. Phys.
,
5
(
4
), pp.
487
506
.10.2478/s11534-007-0031-8
27.
Coxeter
,
H.
,
1965
,
Non-Euclidean Geometry
,
University of Toronto Press
,
Toronto
.
28.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
Trans. ASME J. Mech. Transm. Autom. Des.
,
105
(
3
), pp.
460
467
.10.1115/1.3267382
29.
Angeles
,
J.
,
2006
, “
Is There a Characteristic Length of a Rigid-Body Displacement?
,”
Mech. Mach. Theory
,
41
(
8
), pp.
884
896
.10.1016/j.mechmachtheory.2006.03.010
30.
Larochelle
,
P.
, and
McCarthy
,
J. M.
,
1995
, “
Planar Motion Synthesis Using an Approximate Bi-Invariant Metric
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
646
651
.10.1115/1.2826735
31.
Larochelle
,
P.
, and
McCarthy
,
J. M.
,
1994
, “
Designing Planar Mechanisms Using a Bi-Invariant Metric in the Image Space of SO(3)
,”
Proceedings of the 1994 ASME Design Engineering Technical Conferences, Vol. DE-70, ASME Press
, pp.
221
228
.
32.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North Holland
,
Amsterdam
.
33.
McCarthy
,
J. M.
,
1986
, “
The Generalization of Line Trajectories in Spatial Kinematics to Trajectories of Great Circles on a Hyper- Sphere
,”
ASME J. Mech., Transm., Autom.
,
108
(
1
), pp.
60
64
.10.1115/1.3260785
34.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT, Cambridge
,
Mass
.
You do not currently have access to this content.