Position and orientation characteristic (POC) equations for topological structure synthesis of serial and parallel mechanisms were proposed in a published paper by the authors. This paper will further prove the correctness and strictness of the theoretical foundation for POC equations and also be a reply to the reviewers of our follow-up papers. The main contents of this paper include: symbolic representation of mechanism topological structure and its invariance, velocity characteristic (VC) set and POC set of link and its invariance, one-to-one correspondence between elements of the VC set and POC set, POC equations for the serial mechanism and 10 corresponding “union” operation rules, and POC equations for the parallel mechanism and 14 corresponding “intersection” operation rules. In addition, the interrelations and differences among three methods (POC set based method, screw theory based method, and displacement subgroup based method) for mechanism topological structure design are concluded.

References

References
1.
Carricato
,
M.
, and
Parenti-Castelli
, V
.
,
2001
, “
A Family of 3-DOF Translational Parallel Manipulators
,”
Proceedings of the ASME Design Automation Conference
, Pittsburgh, PA, Paper No. DETC2001/DAC-21035.
2.
Frisoli
,
A.
,
Checcacci
,
D.
,
Salsedo
,
F.
,
Bergamasco
,
M.
, and
Stanisic
,
M.
,
2000
, “
Synthesis by Screw Algebra of Translating in-Parallel Actuated Mechanisms
,”
Proceedings of the Conference on Advances in Robot Kinematics
, pp.
433
440
.
3.
Hunt
,
K. H.
,
1973
, “
Constant-Velocity Shaft Coupling: A General Theory
,”
ASME J. Eng. Ind.
,
95
, pp.
455
464
.10.1115/1.3438177
4.
Tsai
,
L. W.
,
1999
, “
The Enumeration of a Class of Three-DOF Parallel Manipulators
,”
Proceedings of the 10th World Congress of the Theory of Machine and Mechanisms
, Finland, pp.
1121
1126
.
5.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
,
21
, pp.
131
145
.10.1177/027836402760475342
6.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-mobility Parallel Mechanisms Using the Constraint-synthesis Method
,”
Int. J. Robot. Res.
,
22
, pp.
59
79
.10.1177/0278364903022001005
7.
Li
,
Q. C.
, and
Huang
,
Z.
,
2003
, “
A Family of Symmetrical Lower Mobility Parallel Mechanisms With Spherical and Parallel Sub-Chains
,”
J. Rob. Syst.
,
20
(
6
), pp.
297
305
.10.1002/rob.10088
8.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
, pp.
101
108
.10.1115/1.1637655
9.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms, Springer Tracts in Advanced Robotics
, Vol.
33
,
Springer
,
New York
.
10.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.-J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
, p.
031008
.10.1115/1.4004123
11.
Gao
,
F.
,
Yang
,
J.
, and
Qiaode
,
J. G.
,
2011
, “
Type Synthesis of Parallel Mechanisms Having the Second Class GF Sets and Two Dimensional Rotations
,”
ASME J. Mech. Rob.
,
3
, p.
011003
.10.1115/1.4002697
12.
Perez-Gracia
,
A.
,
2011
, “
Synthesis of Spatial RPRP Closed Linkages for a Given Screw System
,”
ASME J. Mech. Rob.
,
3
, p.
021009
.10.1115/1.4003846
13.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Application of Kinematics and Statics to Robotics
,
Oxford University Press
,
London
.
14.
Herve
,
J. M.
,
1978
, “
Analyses Structurelle Des Mecanismes Par Groupe des Replacements
,”
Mech. Mach. Theory
,
13
, pp.
437
450
.10.1016/0094-114X(78)90017-4
15.
Fanghella
,
P.
, and
Galletti
,
C.
,
1994
, “
Mobility Analysis of Single-Loop Kinematic Chains: An Algorithmic Approach Based on Displacement Groups
,”
Mech. Mach. Theory
,
29
, pp.
1187
1204
.10.1016/0094-114X(94)90009-4
16.
Fanghella
,
P.
, and
Galletti
,
C.
,
1995
, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
,
117
, pp.
470
478
.10.1115/1.2826702
17.
Herve
,
J. M.
,
1995
, “
Design of Parallel Manipulators via the Displacement Subgroup
,”
Proceedings of the 9th World Congress on Theory of Machine and Mechanisms
, Milan, pp.
2079
2082
.
18.
Herve
,
J. M.
,
1999
, “
The Lie Group of Rigid Displacement Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
, pp.
719
730
.10.1016/S0094-114X(98)00051-2
19.
Karouia
,
M.
, and
Hervé
,
J. M.
,
2002
, “
A Family of Novel Orientational 3-DoF Parallel Robots
,”
Proceedings of RoManSy
, Udine, Italy, July 1–4, pp.
359
368
.
20.
Angeles
,
J.
,
2002
, “
The Quantitative Synthesis of Parallel Manipulators
,”
Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
, Quebec, pp.
160
169
.
21.
Li
,
Q.-C.
,
Huang
,
Z.
, and
Herve
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
, pp.
173
180
.10.1109/TRA.2004.824650
22.
Huynh
,
P.
, and
Hervé
,
J. M.
,
2005
, “
Equivalent Kinematic Chains of Three Degree-of-Freedom Tripod Mechanisms With Planar-Spherical Bonds
,”
ASME J. Mech. Des.
,
127
, pp.
95
102
.10.1115/1.1825439
23.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2007
, “
Cartesian Parallel Manipulators With Pseudoplanar Limbs
,”
ASME J. Mech. Des.
,
129
, pp.
1256
1264
.10.1115/1.2779892
24.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2008
, “
Uncoupled Actuation of Overconstrained 3T-1R Hybrid Parallel Manipulators
,”
Robotica
,
27
, pp.
103
117
.10.1017/S0263574708004554
25.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chavez
,
A.
,
Pérez-Soto
,
G. I.
, and
Rocha-Chavarria
,
J.
,
2006
, “
A Comprehensive Theory of Type Synthesis of Fully Parallel Platforms
,”
Proceedings of the ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Paper No. DETC2006-99070.
26.
Rico
.
J. M.
,
Cervantes
,
J. J.
,
Rocha
,
J.
,
Gallardo
,
J.
,
Aguilera
,
L. D.
,
Pérez
,
G. I.
, and
Tadeo
,
A.
,
2007
, “
Mobility of Single Loop Linkages: A Final Word?
,”
Proceedings of the ASME Mechanisms Conference
, Paper No. DETC2007-34936.
27.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
, p.
021001
.10.1115/1.2965364
28.
Jin
,
Q.
, and
Yang
,
T.-L.
,
2004
, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
, pp.
625
639
.10.1115/1.1758253
29.
Yang
,
T. L.
,
Liu
,
A.-X.
,
Luo
,
Y.-F.
,
Zhang
,
L.-P.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2009
, “
Comparison Study on Three Approaches for Structure Synthesis of Robot Mechanisms
,”
Proceedings of the ASME 33rd Mechanisms and Robots Conference
, Paper No. DETC2009-86107.
30.
Yang
,
T.-L.
, and
Sun
,
D.-J.
,
2012
, “
A General DOF Formula for Parallel Mechanisms and Multi-Loop Spatial Mechanisms
,”
ASME J. Mech. Rob.
,
134
, p.
011001
.10.1115/1.4005526
31.
Yang
,
T. L.
,
Liu
,
A.-X.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
,
Hang
,
L.-B.
, and
Jin
,
Q.
,
2012
,
Topological Structure Design of Robot Mechanisms
,
Science Press
,
Beijing
.
32.
Yang
,
T.-L.
,
1983
, “
Structural Analysis and Number Synthesis of Spatial Mechanisms
,”
Proceedings of the 6th World Congress on the Theory of Machines and Mechanisms
,
New Delhi
,
India
, Vol.
1
, pp.
280
283
.
33.
Dizioglu
,
B.
,
1978
, “
Theory and Practice of Spatial Mechanisms With Special Positions of the Axes
,”
Mech. Mach. Theory
,
13
(
2
), pp.
139
153
.10.1016/0094-114X(78)90038-1
34.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots: Part I—Methodology
,
Springer
,
New York
.
You do not currently have access to this content.