Achieving large motion range (>1 mm) along with nanometric motion quality (<10 nm) simultaneously has been a key challenge in nanopositioning systems. Practical limitations associated with the individual physical components (bearing, actuators, and sensors) and their integration, particularly in the case of multi-axis systems, have restricted the range of currently available nanopositioning systems to approximately 100 μm per axis. This paper presents a novel physical system layout, comprising a bearing, actuators, and sensors, that enables large range XY nanopositioning. The bearing is based on a parallel-kinematic XY flexure mechanism that provides a high degree of geometric decoupling between the two motion axes by avoiding geometric over-constraint, provides actuator isolation that allows the use of large-stroke single-axis actuators, and enables a complementary end-point sensing scheme using commonly available sensors. These attributes help achieve 10 mm × 10 mm motion range in the proposed nanopositioning system. Having overcome the physical system design challenges, a dynamic model of the proposed nanopositioning system is created and verified via system identification. In particular, dynamic nonlinearities associated with the large displacements of the flexure mechanism and resulting controls challenges are identified. The physical system is fabricated, assembled, and tested to validate its simultaneous large range and nanometric motion capabilities. Preliminary closed-loop test results, which highlight the potential as well as pending challenges associated with this new design configuration, are presented.

References

References
1.
Hicks
,
T. R.
, and
Atherton
,
P. D.
,
1997
,
The Nanopositioning Book
,
Queensgate Instruments Ltd.
,
Cypress, CA
.
2.
Sato
,
K.
,
2006
, “
Trend of Precision Positioning Technology
,”
Proceedings of the ABCM Symposium Series in Mechatronics
, pp.
739
750
.
3.
Jordan
,
S.
, and
Lula
,
B.
,
2005
, “
Nanopositioning: The Technology and the Options
,”
The 2005 Photonics Handbook
, Laurin Publications, Pittsfield, MA.
4.
nPoint Inc.
,
2002
,
Application Note: Nanopositioning Tools and Techniques for R&D Applications
,
nPoint Inc.
,
Middleton, WI
.
5.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
,
2007
, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
802
823
.10.1109/TCST.2007.903345
6.
Queensgate Instruments
,
2013
, “
Product Model # NPS-XY-100A
,”
Queensgate Instruments
,
Cypress, CA
.
7.
Physik Instrumente
,
2011
, “
Product Model # P-541.2, Piezo XY Nanopositioning Stage
,”
Physik Instrumente
,
Karlsruhe, Germany
.
8.
Mad City Labs
,
2013
, “
Product Model # NanoBio2200
,”
Mad City Labs
,
Madison, WI
.
9.
PiezoSystem Jena
,
2013
, “
Product Model # PXY400
,”
PiezoSystem Jena
,
Jena, Germany
.
10.
Aphale
,
S. S.
,
Bhikkaji
,
B.
, and
Moheimani
,
S. O. R.
,
2008
, “
Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms
,”
IEEE Trans. Nanotechnol.
,
7
(
1
), pp.
79
90
.10.1109/TNANO.2007.910333
11.
Dai
,
G.
,
Pohlenz
,
F.
,
Danzebrink
,
H.-U.
,
Xu
,
M.
,
Hasche
,
K.
, and
Wilkening
,
G.
,
2004
, “
Metrological Large Range Scanning Probe Microscope
,”
Rev. Sci. Instrum.
,
75
(
4
), pp.
962
969
.10.1063/1.1651638
12.
Hausotte
,
T.
,
Jaeger
,
G.
,
Manske
,
E.
,
Hofmann
,
N.
, and
Dorozhovets
,
N.
,
2005
, “
Application of a Positioning and Measuring Machine for Metrological Long-Range Scanning Force Microscopy
,”
Proc. SPIE
,
5878
, pp.
1
12
10.1117/12.620882.
13.
Kramar
,
J. A.
,
2005
, “
Nanometre Resolution Metrology With the Molecular Measuring Machine
,”
Meas. Sci. Technol.
,
16
(
11
), pp.
2121
2128
.10.1088/0957-0233/16/11/001
14.
Sinno
,
A.
,
Ruaux
,
P.
,
Chassagne
,
L.
,
Topçu
,
S.
,
Alayli
,
Y.
,
Lerondel
,
G.
,
Blaize
,
S.
,
Bruyant
,
A.
, and
Royer
,
P.
,
2007
, “
Enlarged Atomic Force Microscopy Scanning Scope: Novel Sample-Holder Device With Millimeter Range
,”
Rev. Sci. Instrum.
,
78
(
9
), pp.
1
7
.10.1063/1.2773623
15.
Weckenmann
,
A.
, and
Hoffmann
,
J.
,
2007
, “
Long Range 3D Scanning Tunnelling Microscopy
,”
CIRP Ann.
,
56
(
1
), pp.
525
528
.10.1016/j.cirp.2007.05.125
16.
Salaita
,
K.
,
Wang
,
Y.
, and
Mirkin
,
C. A.
,
2007
, “
Applications of Dip-Pen Nanolithography
,”
Nature Nanotechnol.
,
2
(
3
), pp.
145
155
.10.1038/nnano.2007.39
17.
Mirkin
,
C. A.
,
2001
, “
Dip-Pen Nanolithography: Automated Fabrication of Custom Multicomponent, Sub-100-Nanometer Surface Architectures
,”
MRS Bull.
,
26
(
7
), pp.
535
538
.10.1557/mrs2001.126
18.
Sebastian
,
A.
,
Pantazi
,
A.
,
Pozidis
,
H.
, and
Eleftheriou
,
E.
,
2008
, “
Nanopositioning for Probe-Based Data Storage (Applications of Control)
,”
IEEE Control Syst. Mag.
,
28
(
4
), pp.
26
35
.10.1109/MCS.2008.924795
19.
Van de Moosdijk
,
M.
,
Van den Brink
,
E.
,
Simon
,
K.
,
Friz
,
A.
,
Phillipps
,
G. N.
,
Travers
,
R. J.
, and
Raaymakers
,
E.
,
2002
, “
Collinearity and Stitching Performance on an ASML Stepper
,”
Proc. SPIE
,
4688
, pp.
858
866
.10.1117/12.472358
20.
Liu
,
H.
,
Lu
,
B.
,
Ding
,
Y.
,
Tang
,
Y.
, and
Li
,
D.
,
2003
, “
A Motor-Piezo Actuator for Nano-Scale Positioning Based on Dual Servo Loop and Nonlinearity Compensation
,”
J. Micromech. Microeng.
,
13
(
2
), pp.
295
299
.10.1088/0960-1317/13/2/318
21.
Han
,
D.
, and
Zhenhua
,
X.
,
2006
, “
Motion Stages for Electronic Packaging Design and Control
,”
IEEE Rob. Autom. Mag.
,
13
, pp.
51
61
.10.1109/MRA.2006.250562
22.
O'Brien
,
W.
,
2005
, “
Long-Range Motion With Nanometer Precision
,”
Photonics Spectra
, pp.
80
81
.
23.
Fan
,
K.-C.
,
Fei
,
Y.
,
Yu
,
X.
,
Wang
,
W.
, and
Chen
,
Y.
,
2007
, “
Study of a Noncontact Type Micro-CMM With Arch-Bridge and Nanopositioning Stages
,”
Rob. Comput.-Integr. Manufact.
,
23
(
3
), pp.
276
284
.10.1016/j.rcim.2006.02.007
24.
Maeda
,
G. J.
, and
Sato
,
K.
,
2008
, “
Practical Control Method for Ultra-Precision Positioning Using a Ballscrew Mechanism
,”
Precis. Eng.
,
32
(
4
), pp.
309
318
.10.1016/j.precisioneng.2007.10.002
25.
Kim
,
W.-j.
,
Verma
,
S.
, and
Shakir
,
H.
,
2007
, “
Design and Precision Construction of Novel Magnetic-Levitation-Based Multi-Axis Nanoscale Positioning Systems
,”
Precis. Eng.
,
31
(
4
), pp.
337
350
.10.1016/j.precisioneng.2007.02.001
26.
Holmes
,
M.
,
Hocken
,
R.
, and
Trumper
,
D.
,
2000
, “
The Long-Range Scanning Stage: A Novel Platform for Scanned-Probe Microscopy
,”
Precis. Eng.
,
24
(
3
), pp.
191
209
.10.1016/S0141-6359(99)00044-6
27.
Maeda
,
G. J.
,
Sato
,
K.
,
Hashizume
,
H.
, and
Shinshi
,
T.
,
2006
, “
Control of an XY Nano-Positioning Table for a Compact Nano-Machine Tool
,”
JSME Int. J., Ser. C
,
49
(
1
), pp.
21
27
.10.1299/jsmec.49.21
28.
Dejima
,
S.
,
Gao
,
W.
,
Katakura
,
K.
,
Kiyono
,
S.
, and
Tomita
,
Y.
,
2005
, “
Dynamic Modeling, Controller Design and Experimental Validation of a Planar Motion Stage for Precision Positioning
,”
Precis. Eng.
,
29
(
3
), pp.
263
271
.10.1016/j.precisioneng.2004.11.005
29.
Culpepper
,
M. L.
, and
Anderson
,
G.
,
2004
, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
,
28
(
4
), pp.
469
482
.10.1016/j.precisioneng.2004.02.003
30.
Choi
,
Y.-M.
,
Kim
,
J. J.
,
Kim
,
J.
, and
Gweon
,
D. G.
,
2008
, “
Design and Control of a Nanoprecision XY Theta Scanner
,”
Rev. Sci. Instrum.
,
79
(
4
), p.
045109
.10.1063/1.2902276
31.
Pahk
,
H. J.
,
Lee
,
D. S.
, and
Park
,
J. H.
,
2001
, “
Ultra Precision Positioning System for Servo Motor-Piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation
,”
Int. J. Mach. Tools Manuf.
,
41
(
1
), pp.
51
63
.10.1016/S0890-6955(00)00061-4
32.
Parmar
,
G.
,
Hiemstra
,
D.
, and
Awtar
,
S.
,
2012
, “
Large Dynamic Range Nanopositioning Using Iterative Learning Control
,”
Proceedings of the ASME Dynamic Systems and Control Conference
.
33.
Fischer
,
F. L.
,
1981
, “
Symmetrical 3 DOF Compliance Structure
,” U.S. Patent No. 4447048.
34.
Smith
,
A. R.
,
Gwo
,
S.
, and
Shih
,
C.-K. K.
,
1994
, “
A New High Resolution Two-Dimensional Micropositioning Device for Scanning Probe Microscopy
,”
Rev. Sci. Instrum.
,
64
(
10
), pp.
3216
3219
.10.1063/1.1144552
35.
Dagalakis
,
N. G.
,
Kramar
,
J. A.
,
Amatucci
,
E.
, and
Bunch
,
R.
,
2001
, “
Kinematic Modelling and Analysis of Planer Micro-positioner
,”
Proceedings of the ASPE 16th Annual Meeting
, pp.
135
138
.
36.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
,
2007
, “
Design, Analysis, Fabrication and Testing of a Parallel-Kinematic Micropositioning XY Stage
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
946
961
.10.1016/j.ijmachtools.2006.07.007
37.
Chen
,
K. S.
,
Trumper
,
D. L.
, and
Smith
,
S. T.
,
2002
, “
Design and Control for an Electromagnetically Driven X-Y-[Theta] Stage
,”
Precis. Eng.
,
26
(
4
), pp.
355
369
.10.1016/S0141-6359(02)00147-2
38.
Awtar
,
S.
,
2004
, “
Analysis and Synthesis of Planer Kinematic XY Mechanisms
,” Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
39.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2005
, “
Topology Evolution of High Performance XY Flexure Stages
,”
ASPE Annual Meeting
,
Norfolk, VA
.
40.
Zhelyaskov
, V
.
,
Broderick
,
M.
,
Raphalovitz
,
A.
, and
Davies
,
B. L.
,
2006
, “
Automated Piezoelectric Nanopositioning Systems—Long Travel Ranges and Accurate Angular Movement Create New Opportunities in Biomedical Manipulation Systems
,”
IEEE Circuits Devices Mag.
,
22
, pp.
75
78
.10.1109/MCD.2006.307280
41.
Klocke
,
V.
,
2002
, “
Engineering in the Nanocosmos: Nanorobotics Moves Kilograms of Mass
,”
J. Nanosci. Nanotechnol.
,
2
(
3–4
), pp.
435
440
.10.1166/jnn.2002.121
42.
Gao
,
W.
,
Dejima
,
S.
,
Yanai
,
H.
,
Katakura
,
K.
,
Kiyono
,
S.
, and
Tomita
,
Y.
,
2004
, “
A Surface Motor-Driven Planar Motion Stage Integrated With an XY[Theta]Z Surface Encoder for Precision Positioning
,”
Precis. Eng.
,
28
(
3
), pp.
329
337
.10.1016/j.precisioneng.2003.12.003
43.
Optra Inc.
, “
Product # NanoGrid A Planar Encoder
,”
Optra Inc.
,
Topsfield, MA
.
44.
SIOS Meßtechnik GmbH
, “
Product # Series SP-D Double Plane-Mirror Interferometer
,”
SIOS Meßtechnik GmbH
,
Ilmenau, Germany
.
45.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.10.1115/1.2735342
46.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.10.1115/1.2717231
47.
Awtar
,
S.
,
2010
, “
Precision Systems Design Laboratory
,” University of Michigan, http://www.umich.edu/~awtar
48.
Lee
,
M. G.
,
Lee
,
S. Q.
, and
Gweon
,
D. G.
,
2004
, “
Analysis of Halbach Magnet Array and Its Application to Linear Motor
,”
Mechatronics
,
14
, pp.
115
128
.10.1016/S0957-4158(03)00015-1
49.
Teo
,
T. J.
,
Chen
, I
. M.
,
Yang
,
G.
, and
Lin
,
W.
,
2008
, “
A Flexure-Based Electromagnetic Linear Actuator
,”
Nanotechnology
,
19
(
31
), pp.
1
10
.10.1088/0957-4484/19/31/315501
50.
Youm
,
W.
,
Jung
,
J.
,
Lee
,
S.
, and
Park
,
K.
,
2008
, “
Control of Voice Coil Motor Nanoscanners for an Atomic Force Microscopy System Using a Loop Shaping Technique
,”
Rev. Sci. Instrum.
,
79
(
1
), p.
013707
.10.1063/1.2829990
51.
Fukada
,
S.
, and
Nishimura
,
K.
,
2007
, “
Nanometric Positioning Over a One-Millimeter Stroke Using a Flexure Guide and Electromagnetic Linear Motor
,”
Int. J. Precis. Eng. Manuf
,
8
, pp.
49
53
.
52.
Rapuano
,
S.
,
Daponte
,
P.
,
Balestrieri
,
E.
,
Vito
,
L. D.
,
Tilden
,
S. J.
,
Max
,
S.
, and
Blair
,
J. J.
,
2005
, “
ADC Parameters and Characteristics—Part 6 in a Series of Tutorials in Instrumentation and Measurement
,”
IEEE Instrum. Meas. Mag.
,
8
(
5
), pp.
44
54
.10.1109/MIM.2005.1578617
53.
Cirrus Logic
, “
Application Note 13: Voltage to Current Conversion
,”
Cirrus Logic
,
Austin
,
TX
.
54.
Book
,
W. J.
,
1993
, “
Controlled Motion in an Elastic World
,”
ASME, J. Dyn. Syst. Meas. Control
,
115
(
2B
), pp.
252
261
.10.1115/1.2899065
55.
Spector
, V
. A.
, and
Flashner
,
H.
,
1990
, “
Modeling and Design Implications of Noncollocated Control in Flexible Systems
,”
ASME, J. Dyn. Syst., Meas. Control
,
112
(
2
), pp.
186
193
.10.1115/1.2896125
56.
Lee
,
C.
, and
Salapaka
,
S. M.
,
2009
, “
Two Degree of Freedom Control for Nanopositioning Systems: Fundamental Limitations, Control Design, and Related Trade-Offs
,”
Proceedings of the American Controls Conference
, pp.
1664
1669
.
57.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control, Analysis and Design
,
Wiley
,
New York
.
You do not currently have access to this content.