Load flow visualization, which is an important step in structural and machine assembly design may aid in the analysis and eventual synthesis of compliant mechanisms. In this paper, we present a kineto-static formulation to visualize load flow in compliant mechanisms. This formulation uses the concept of transferred forces to quantify load flow from input to the output of a compliant mechanism. The magnitude and direction of load flow in the constituent members enables functional decomposition of the compliant mechanism into (i) Constraints (C): members that are constrained to deform in a particular direction and (ii) Transmitters (T): members that transmit load to the output. Furthermore, it is shown that a constraint member and an adjacent transmitter member can be grouped together to constitute a fundamental building block known as an CT set whose load flow behavior is maximally decoupled from the rest of the mechanism. We can thereby explain the deformation behavior of a number of compliant mechanisms from literature by visualizing load flow, and identifying building blocks.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2003
, “
A Computational Approach to the Number of Synthesis of Linkages
,”
J. Mech. Des.
,
125
(
1
), pp.
110
118
.10.1115/1.1539513
3.
Krishnan
,
G.
, and
Ananthasuresh
,
G. K.
,
2008
, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
J. Mech. Des.
,
130
(
10
), p.
102304
.10.1115/1.2965599
4.
Hegde
,
S.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Design of Single-Input-Single-Output Compliant Mechanisms for Practical Applications Using Selection Maps
,”
J. Mech. Des.
,
132
(
8
), p.
081007
.10.1115/1.4001877
5.
Skakoon
,
J. G.
,
2008
,
The Elements of Mechanical Design
,
ASME
,
New York
.
6.
Ullman
,
D. G.
,
2003
,
The Mechanical Design Process
,
McGraw-Hill
,
Boston
.
7.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.10.1016/0045-7825(91)90245-2
8.
Lu
,
K.-J.
, and
Kota
,
S.
,
2003
, “
Synthesis of Shape Morphing Compliant Mechanisms Using a Load Path Representation Method
,”
Smart Mater. Struct.
,
SPIE-5049
, pp.
337
348
.10.1117/12.484020
9.
Juvinall
,
R. C.
,
1983
,
Fundamentals of Machine Component Design
,
Wiley
,
New York
.
10.
Chong
,
K. P.
, and
Boresi
,
A.
,
2000
,
Elasticity in Engineering Mechanics
,
Wiley
,
New York
.
11.
Kelly
,
D. W.
, and
Tosh
,
M. W.
,
2000
, “
Interpreting Load Paths and Stress Trajectories in Elasticity
,”
Eng. Comput.
,
17
(
2
), pp.
117
135
.10.1108/02644400010313084
12.
Harasaki
,
H.
, and
Arora
,
J. S.
,
2001
, “
New Concepts of Transferred and Potential Transferred Forces in Structures
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
3–5
), pp.
385
406
.10.1016/S0045-7825(01)00279-1
13.
Marhadi
,
K.
, and
Vekataraman
,
S.
,
2009
, “
Comparison of Quantitative and Qualitative Information Provided by Different Structural Load Path Definitions
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
3
, pp.
384
400
.10.1051/ijsmdo/2009014
14.
Blanding
,
D. K.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME
,
New York
.
15.
Lu
,
K. J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
J. Mech. Design
,
128
(
5
), pp.
1080
1091
.10.1115/1.2216729
16.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
, pp
36
49
.10.1007/s001580050084
17.
Lu
,
K.-J.
, and
Kota
,
S.
,
2005
, “
An Effective Method of Synthesizing Compliant Adaptive Structures Using Load Path Representation
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
307
317
.10.1177/1045389X05050104
18.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2010
, “
Load-Transmitter Constraint Sets: Part II-a Building Block Method for the Synthesis of Compliant Mechanisms
,”
Proceedings of 2010 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences
, August,
Montreal, CA
.
You do not currently have access to this content.