The elliptic integral solution is often considered to be the most accurate method for analyzing large deflections of thin beams in compliant mechanisms. In this paper, a comprehensive solution based on the elliptic integrals is proposed for solving large deflection problems. By explicitly incorporating the number of inflection points and the sign of the end-moment load in the derivation, the comprehensive solution is capable of solving large deflections of thin beams with multiple inflection points and subject to any kinds of load cases. The comprehensive solution also extends the elliptic integral solutions to be suitable for any beam end angle. Deflected configurations of complex modes solved by the comprehensive solution are presented and discussed. The use of the comprehensive solution in analyzing compliant mechanisms is also demonstrated by examples.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
,
New York, NY
.
2.
Campanile
,
L. F.
, and
Hasse
,
A.
,
2008
, “
A Simple and Effective Solution of the Elastica Problem
,”
J. Mech. Eng. Sci.
,
222
(
12
), pp.
2513
2516
.10.1243/09544062JMES1244
3.
Hill
,
T. C.
, and
Midha
,
A.
,
1990
, “
A Graphical, User-Driven Newton-Raphson Technique for Use in the Analysis and Design of Compliant Mechanisms
,”
J. Mech. Des.
,
11
(
1
), pp.
123
130
.10.1115/1.2912569
4.
Coulter
,
B. A.
, and
Miller
,
R. E.
,
1988
, “
Numerical Analysis of a Generalized Plane Elastica With Non-Linear Material Behavior
,”
Int. J. Numer. Methods Eng.
,
26
, pp.
617
630
.10.1002/nme.1620260307
5.
Chase
,
R. P.
Jr.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
A 3-D Chain Algorithm With Pseudo-Rigid-Body Model Elements
,”
Mech. Based Des. Struct. Mach.
,
39
(
1
), pp.
142
156
.10.1080/15397734.2011.541783
6.
Banerjee
,
A.
,
Bhattacharya
,
B.
, and
Mallik
,
A. K.
,
2008
, “
Large Deflection of Cantilever Beams With Geometric Non-Linearity: Analytical and Numerical Approaches
,”
Int. J. Non-Linear Mech.
,
43
(
5
), pp.
366
376
.10.1016/j.ijnonlinmec.2007.12.020
7.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworth
,
Washington, D.C
.
8.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1998
, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
392
400
.10.1115/1.2829164
9.
Lyon
,
S. M.
,
Howell
,
L. L.
, and
Roach
,
G. M.
,
2000
, “
Modeling Flexible Segments With Force and Moment End Loads Via the Pseudo-Rigid-Body Model
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov. 5–10, DSC-Vol. 69–72, pp.
883
890
.
10.
Lyon
,
S. M.
, and
Howell
,
L. L.
,
2002
, “
A Simplified Pseudo-Rigid-Body Model for Fixed-Fixed Flexible Segments
,”
Proceedings of the ASME Design Engineering Technical Conferences
,
Montreal, Canada
, Sept. 29–Oct. 3, DETC2002/MECH-34203, pp.
23
33
11.
Su
,
H.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.10.1115/1.3046148
12.
Chen
,
G.
,
Xiong
,
B.
, and
Huang
,
X.
,
2011
, “
Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer
,”
Precis. Eng.
,
35
(
3
), pp.
505
511
.
13.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
,
1945
, “
Large Deflection of Cantilever Beams
,”,
33
(
3
), pp.
272
275
. Available at http://users.cybercity.dk/~bcc25154/Webpage/largedeflection.htm
14.
Howell
,
L. L.
, and
Leonard
,
J. N.
,
1997
, “
Optimal Loading Conditions for Non-Linear Deflections
,”
Int. J. Non-Linear Mech.
,
32
(
3
), pp.
505
514
.10.1016/S0020-7462(96)00069-8
15.
Kimball
,
C.
, and
Tsai
,
L. W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
, pp.
223
235
.10.1115/1.1455031
16.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
,
1971
, “
On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms
,”
ASME J. Eng. Ind.
,
93
, pp.
263
267
.10.1115/1.3427884
17.
Shoup
,
T. E.
,
1972
, “
On the Use of the Nodal Elastica for the Analysis of Flexible Link Devices
,”
ASME J. Eng. Ind.
,
94
(
3
), pp.
871
875
.10.1115/1.3428264
18.
Chen
,
G.
, and
Zhang
,
A.
,
2011
, “
Accuracy Evaluation of PRBM for Predicting Kinetostatic Behavior of Flexible Segments in Compliant Mechanisms
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Aug. 28–31,
Washington, DC
, DETC2011-47117.
19.
Zhao
,
J.
,
Jia
,
J.
,
He
,
X.
, and
Wang
,
H.
,
2008
, “
Post-Buckling and Snap-Through Behavior of Inclined Slender Beams
,”
IEEE Sens. J.
,
75
(
4
), p.
041020
.10.1115/1.2870953
20.
Zhao
,
J.
,
Yang
,
Y.
,
Fan
,
K.
,
Hu
,
P.
, and
Wang
,
H.
,
2010
, “
A Bistable Threshold Accelerometer With Fully Compliant Clamped-Clamped Mechanism
,”
IEEE Sens. J.
,
10
(
5
), pp.
1019
1024
.10.1109/JSEN.2010.2042712
21.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
, p.
051002
.10.1115/1.4003922
22.
Byrd
,
P. F.
, and
Friedman
,
M. D.
,
1954
,
Handbook of Ellipitic Integrals for Engineers and Physicists
,
Springer-Verlag
,
Berlin
.
23.
Kim
,
C.
,
2011
, “
Curve Decomposition Analysis for Fixed-Guided Beams With Application to Statically Balanced Compliant Mechanism
,”
Proceedings of the 2011 ASME International Design Engineering Technical Conferences
, DETC2011-47829.
You do not currently have access to this content.