Multistable mechanisms providing spatial motion could be useful in numerous applications; this paper explores the multistable behavior of the overconstrained spatial Sarrus mechanisms with compliant joints (CSMs). The mechanism analysis is simplified by considering it as two submechanisms. The kinetostatics of CSMs have been formulated based on the pseudorigid-body method for compliant members at any combination of joints. The kinetostatic results show that a CSM is capable of exhibiting bistability, tristability, and quadristability. The type of behavior is found to depend on the initial (as-fabricated) position and the relative limit positions of the two submechanisms. Possible applications of multistable CSMs include deployable structures, static balancing of human/robot bodies, and weight compensators.

References

References
1.
Waldron
,
K. J.
,
1968
, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.10.1016/0022-2569(68)90016-5
2.
Baker
,
J. E.
,
1984
, “
On 5-Revolute Linkages With Parallel Adjacent Joint Axes
,”
Mech. Mach. Theory
,
19
(
6
), pp.
467
475
.10.1016/0094-114X(84)90053-3
3.
Kutzbach
,
K.
,
1929
, “
Mechanische leitungsverzweigung, ihre gesetze und anwendungen
,”
Maschinenbau
,
8
(
21
), pp.
710
716
.
4.
Lee
,
C.-C.
,
1996
, “
Kinematic Analysis and Dimensional Synthesis of General-Type Sarrus Mechanism
,”
JSME Int. J., Ser. C
,
39
(
4
), pp.
790
799
. Available at http://ci.nii.ac.jp/naid/110004089599
5.
Hoover
,
A. M.
, and
Fearing
,
R. S.
,
2009
, “
Analysis of Off-Axis Performance of Compliant Mechanisms With Applications to Mobile Millirobot Design
,”
Proceedings of IROS
,
Oct. 10–15
,
St. Louis, MO
, pp.
2770
2776
.
6.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
7.
Jensen
,
B. D.
,
Parkinson
,
M. B.
,
Kurabayashi
,
K.
,
Howell
,
L. L.
, and
Baker
,
M. S.
,
2001
, “
Design Optimization of a Fully-Compliant Bistable Micro-Mechanism
,”
Proceedings of ASME IMECE 2001
,
Nov. 11–16
,
New York
, Vol.
2
, pp.
2931
2937
.
8.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
, pp.
137
146
.10.1109/JMEMS.2004.825308
9.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
.10.1115/1.2829477
10.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
, pp.
273
280
.10.1109/JMEMS.2003.811751
11.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
, pp.
701
708
.10.1115/1.1625399
12.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
.10.1115/1.1760776
13.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.10.1109/JMEMS.2005.859089
14.
Sönmez
,
Ü.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.10.1115/1.2839009
15.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.10.1016/j.mechmachtheory.2009.09.009
16.
Pendleton
,
T. M.
, and
Jensen
,
B. D.
,
2007
, “
Development of a Tristable Compliant Mechanism
,”
Proceedings of 12th IFToMM World Congress, A835
,
June 18–21
,
Besançon, France
.
17.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
, p.
025011
.10.1088/0960-1317/19/2/025011
18.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
Trans. ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.10.1115/1.4000529
19.
Chen
,
G.
, and
Du
,
Y.
,
2013
, “
Double-Young Tristable Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011007
.10.1115/1.4007941
20.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Tension-Based Multi-Stable Compliant Rolling-Contact Elements
,”
Mech. Mach. Theory
,
45
(
2
), pp.
147
156
.10.1016/j.mechmachtheory.2008.11.013
21.
Han
,
J. S.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
,
2007
, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
,
129
, pp.
1198
1203
.10.1115/1.2771577
22.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Quadristable Compliant Mechanism With a Bistable Structure Embedded in a Surrounding Beam Structure
,”
Sens. Actuators, A
,
167
, pp.
438
448
.10.1016/j.sna.2011.02.044
23.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
, p.
021002
.10.1115/1.3013316
24.
Gerson
,
Y.
,
Krylov
,
S.
,
Ilic
,
B.
, and
Schreiber
,
D.
,
2012
, “
Design Considerations of a Large-Displacement Multistable Micro Actuator With Serially Connected Bistable Elements
,”
Finite Elem. Anal. Design
,
49
(
1
), pp.
58
69
.10.1016/j.finel.2011.08.021
25.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Compliant Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.10.1115/1.4004543
26.
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2008
, “
Spherical Bistable Micromechanism
,”
ASME J. Mech. Des.
,
130
(
4
), p.
045001
.10.1115/1.2885079
27.
Choueifati
,
J. G.
,
2007
, “
Design and Modeling of a Bistable Spherical Compliant Mechanism
,” thesis, University of South Florida, Available at http://scholarcommons.usf.edu/etd/668/
28.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2003
, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
304
326
.10.1109/TMECH.2003.809156
29.
Chen
,
G.
,
Liu
,
X.
, and
Du
,
Y.
,
2011
, “
Elliptical-Arc-Fillet Flexure Hinges: Towards a Generalized Model for Most Commonly Used Flexure Hinges
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081002
.10.1115/1.4004441
30.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
7
), pp.
788
798
.10.1115/1.1900149
31.
Haringx
,
J. A.
,
1949
, “
The Cross-Spring Pivot as a Constructional Element
,”
Appl. Sci. Res.
,
1
(
1
), pp.
313
332
.10.1007/BF02120338
32.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.10.1016/S0094-114X(02)00007-1
33.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
2nd ed.
,
Springer
,
New York
.
34.
Norman
,
A. D.
,
Guest
,
S. D.
, and
Seffen
,
K. A.
,
2007
, “
Novel Multistable Corrugated Structures
,”
Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
April 23C26
,
Waikiki, Hawaii
.
35.
Tolou
,
M.
,
Henneken
,
V. A.
, and
Herder
,
J. L.
,
2010
, “
Statically-Balanced Compliant Micro Mechanisms (SB-MEMS): Concepts and Simulation
,”
Proceedings of the ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Montreal, Canada
,
Aug. 15–18
, DETC2010-28406.
36.
Hoetmer
,
K.
,
Herder
,
J. L.
, and
Kim
,
C. J.
,
2009
, “
A Building Block Approach for the Design of Statically Balanced Compliant Mechanisms
,”
Proceedings of the ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
San Diego
,
CA
,
Aug. 30–Sept. 18
, DETC2009-87451.
37.
Chen
,
G.
, and
Zhang
,
S.
,
2011
, “
Fully-Compliant Statically-Balanced Mechanisms Without Prestressing Assembly: Concepts and Case Studies
,”
Int. J. Mech. Sci.
,
2
(
2
), pp.
169
174
.10.5194/ms-2-169-2011
You do not currently have access to this content.