Wheel slips are unavoidable when moving on a 3D rough surface. They are mainly due to geometrical features of contact surfaces. In this paper, we propose a model for predicting rover motion and contact slips by using a kineto-static model coupled with a linear contact model derived from semiempirical tire/terramechanics approaches. The paper also introduces a coherent approach for motion simulation of uneven articulated rovers which is computationally efficient and can then be used for autonomous on-line path planning. Model results are compared to another numerical model based on a multibody dynamic model including frictional contacts. The well-known rocker-bogie chassis, a highly articulated structure, is chosen to illustrate results and their comparison. Results demonstrate that for a slow motion, the proposed model approximates with a good accuracy the general behavior of the robot with a minimal time computation.

References

References
1.
Bekker
,
M.
,
1969
,
Introduction to Terrain-Vehicle Systems
,
Univerity of Michigan Press
,
Ann Arbor, MI
.
2.
Wong
,
J.
,
1989
,
Terramechanics and Off-Road Vehicles
,
Elsevier
,
Amsterdam
.
3.
Iagnemma
,
K.
,
Kang
,
S.
,
Shibly
,
H.
, and
Dubowsky
,
S.
,
2004
, “
Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers
,”
IEEE Trans. on Rob.Autom.
,
20
(
5
), pp.
921
927
.10.1109/TRO.2004.829462
4.
Jain
,
A.
,
Guineau
,
J.
,
Lim
,
C.
,
Lincoln
,
W.
,
Pomerantz
,
M.
,
Sohl
,
G.
, and
Steele
,
R.
,
2003
, “
Roams: Planetary Surface Rover Simulation Environment
,”
Proceedings of the International Symposium on Artificial Intelligence Robotics and Automation in Space (i-SAIRAS)
.
5.
Howard
,
T.
, and
Kelly
,
A.
,
2007
, “
Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots
,”
Int. J. Rob. Res.
,
26
(
1
), pp.
141
166
.10.1177/0278364906075328
6.
Gibbesch
,
A.
, and
Schafer
,
B.
,
2005
, “
Multibody System Modelling and Simulation of Planetary Rover Mobility on Soft Terrain
,”
Proceedings of The 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space (iSAIRAS)
,
Munich, Germany
.
7.
Thueer
,
T.
,
Ambroise Krebs
,
A.
,
Siegwart
,
R.
, and
Lamon
,
P.
,
2007
, “
Performance Comparison of Rough-Terrain Robots Simulation and Hardware
,”
J. Field Rob.
,
24
(
3
), pp.
251
271
.10.1002/rob.20185
8.
Ishigami
,
G.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2007
, “
Path Planning for Planetary Exploration Rovers and its Evaluation Based on Wheel Slip Dynamics
,”
Proceedings of the IEEE International Robotics and Automation Conference
, pp.
2361
2366
.
9.
Andrade
,
G.
,
Benamar
,
F.
,
Bidaud
,
P.
, and
Chatila
,
R.
,
1998
, “
Modeling Robot-Soil Interaction for Planetary Rover Motion Control
,”
Proceedings of the IEEE/RSJ International Intelligent Robots and Systems Conference
, Vol.
1
, pp.
576
581
.
10.
Krebs
,
A.
,
Thueer
,
T.
,
Michaud
,
S.
, and
Siegwart
,
R.
,
2006
, “
Performance Optimization of All-Terrain Robots: A 2D Quasi-Static Tool
,”
Proceedings of the IEEE/RSJ International Intelligent Robots and Systems Conference
, pp.
4266
4271
.
11.
Benamar
,
F.
,
Jarrault
,
P.
,
Bidaud
,
P.
, and
Grand
,
C.
,
2009
, “
Analysis and Optimization of Obstacle Clearance of Articulated Rovers
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
, pp.
4128
4133
.
12.
Grand
,
C.
,
Benamar
,
F.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2004
, “
Stability and Traction Optimisation of High Mobility Rover-Application to Hybrid Wheel-Leg Rover
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1041
1058
.10.1177/0278364904047616
13.
Sreenivasan
,
S.
, and
Wilcox
,
B.
,
1994
, “
Stability and Traction Control of an Actively Actued Micro-Rover
,”
J. Rob. Syst.
,
11
(
6
), pp.
487
502
.10.1002/rob.4620110604
14.
Tarokh
,
M.
, and
McDermott
,
G. J.
,
2005
, “
Kinematics Modeling and Analyses of Articulated Rovers
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
539
553
.10.1109/TRO.2005.847602
15.
Auchter
,
J.
, and
Moore
,
C. A.
,
2008
, “
Off-Road Robot Modeling with Dextrous Manipulation Kinematics
,”
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2008
, pp.
2313
2318
.
16.
Li
,
Z.
,
Hsu
,
P.
, and
Sastry
,
S.
,
1989
, “
Grasping and Coordinated Manipulation by a Multifingered Robot Hand
,”
Int. J. Rob. Res.
,
8
(
4
), pp.
33
50
.10.1177/027836498900800402
17.
Chakraborty
,
N.
, and
Ghosal
,
A.
,
2004
, “
Kinematics of Wheeled Mobile Robots on Uneven Terrain
,”
Mech. Mach. Theory
,
39
, pp.
1273
1287
.10.1016/j.mechmachtheory.2004.05.016
18.
Trinkle
,
J.
,
1989
, “
A Quasi-Static Analysis of Dextrous Manipulation with Sliding and Rolling Contacts
,”
Proceedings of the 1989 IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
788
793
.
19.
Peshkin
,
M.
, and
Sanderson
,
A.
,
1989
, “
Minimization of Energy in Quasi-Static Manipulation
,”
IEEE Trans. Rob. Autom.
,
5
(
1
), pp.
53
60
.10.1109/70.88017
20.
Kumar
,
V.
, and
Waldron
,
K.
,
1988
, “
Force Distribution in Closed Kinematic Chains
,”
IEEE J. Rob. Autom.
,
4
(
6
), pp.
657
663
.10.1109/56.9303
21.
Selig
,
J.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
22.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
23.
Pacejka
,
H.
,
2002
,
Tyre and Vehicle Dynamics
,
Butterworth-Heinemann
,
Washington, DC
.
24.
Bickler
,
D. B.
,
1989
, “
Articulated Suspension Systems
,”
US Patent No. 4,840,394
.
You do not currently have access to this content.