In general, high-order coupler curves of single-degree-of-freedom plane linkages cannot be properly traced by standard predictor–corrector algorithms due to drifting problems and the presence of singularities. Instead of focusing on finding better algorithms for tracing curves, a simple method that first traces the configuration space of planar linkages in a distance space and then maps it onto the mechanism workspace, to obtained the desired coupler curves, is proposed. Tracing the configuration space of a linkage in the proposed distance space is simple because the equation that implicitly defines this space can be straightforwardly obtained from a sequence of bilaterations, and the configuration space embedded in this distance space naturally decomposes into components corresponding to different combinations of signs for the oriented areas of the triangles involved in the bilaterations. The advantages of this two-step method are exemplified by tracing the coupler curves of a double butterfly linkage.

References

References
1.
Freudenstein
,
F.
,
1962
, “
On the Variety of Motions Generated by Mechanisms
,”
J. Eng. Ind.
,
39
, pp.
156
160
.10.1115/1.3667397
2.
Nielsen
,
J.
, and
Roth
,
B.
,
1999
, “
Solving the Input/Output Problem for Planar Mechanisms
,”
J. Mech. Des.
,
121
(
2
), pp.
206
211
.10.1115/1.2829445
3.
Wampler
,
C.
,
1999
, “
Solving the Kinematics of Planar Mechanisms
,”
J. Mech. Des.
,
121
(
3
), pp.
387
391
.10.1115/1.2829473
4.
Dhingra
,
A.
,
Almadi
,
A.
, and
Kohli
,
D.
,
2000
, “
Closed-Form Displacement Analysis of 8, 9, and 10-Link Mechanisms: Part I: 8-Link 1-DOF Mechanisms
,”
Mech. Mach. Theory
,
35
(
6
), pp.
821
850
.10.1016/S0094-114X(99)00032-4
5.
Lan
,
Z.
,
Huijun
,
Z.
, and
Liuming
,
L.
,
2002
, “
Kinematic Decomposition of Coupler Plane and the Study on the Formation and Distribution of Coupler Curves
,”
Mech. Mach. Theory
,
37
(
1
), pp.
115
126
.10.1016/S0094-114X(01)00054-4
6.
Shirazi
,
K.
,
2006
, “
Symmetrical Coupler Curve and Singular Point Classification in Planar and Spherical Swinging-Block Linkages
,”
J. Mech. Des.
,
128
(
2
), pp.
436
443
.10.1115/1.2167651
7.
Allgower
,
E.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
,
SIAM
, Philadelphia, PA.
8.
Sommese
,
A.
, and
Wampler
,
C.
,
2005
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific
,
Singapore
.
9.
Hernandez
,
A.
, and
Petuya
,
V.
,
2004
, “
Position Analysis of Planar Mechanisms With R-Pairs Using a Geometrical-Iterative Method
,”
Mech. Mach. Theory
,
39
(
2
), pp.
133
152
.10.1016/S0094-114X(03)00110-1
10.
Gomes
,
A.
,
Voiculescu
,
I.
,
Jorge
,
J.
,
Wyvill
,
B.
, and
Galbraith
,
C.
,
2009
,
Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms
,
1st ed.
,
Springer Publishing Company, Inc.
,
New York
.
11.
Lambert
,
J.
,
1991
,
Numerical Methods for Ordinary Differential Systems: The Initial Value Problem
,
John Wiley and Sons
, West Sussex, UK.
12.
Ting
,
K.
,
Xue
,
C.
,
Wang
,
J.
, and
Currie
,
K.
,
2009
, “
Stretch Rotation and Complete Mobility Identification of Watt Six-Bar Chains
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1877
1886
.10.1016/j.mechmachtheory.2009.03.011
13.
Watanabe
,
K.
, and
Katoh
,
H.
,
2004
, “
Identification of Motion Domains of Planar Six-Link Mechanisms of the Stephenson-Type
,”
Mech. Mach. Theory
,
39
(
10
), pp.
1081
1099
.10.1016/j.mechmachtheory.2003.12.003
14.
Ting
,
K.
, and
Dou
,
X.
,
1996
, “
Classification and Branch Identification of Stephenson Six-Bar Chains
,”
Mech. Mach. Theory
,
31
(
3
), pp.
283
295
.10.1016/0094-114X(95)00075-A
15.
Wang
,
J.
,
Ting
,
K.
, and
Xue
,
C.
,
2010
, “
Discriminant Method for the Mobility Identification of Single Degree-of-Freedom Double-Loop Linkages
,”
Mech. Mach. Theory
,
45
(
5
), pp.
740
755
.10.1016/j.mechmachtheory.2009.12.004
16.
Morgado
,
J.
, and
Gomes
,
A.
,
2004
, “
A Derivative-Free Tracking Algorithm for Implicit Curves With Singularities
,”
International Conference on Computational Science
, pp.
221
228
.
17.
Hunt
,
K.
,
1978
,
Kinematic Geometry of Mechanisms, Clarendon Press
,
Oxford
.
18.
Pennock
,
G.
, and
Hasan
,
A.
,
2002
, “
A Polynomial Equation for a Coupler Curve of the Double Butterfly Linkage
,”
J. Mech. Des.
,
124
(
1
), pp.
39
46
.10.1115/1.1436087
19.
McCarthy
,
J.
, and
Soh
,
G.
,
2011
,
Geometric Design of Linkages
,
Springer
,
New York
.
20.
Rojas
,
N.
, and
Thomas
,
F.
,
2011
, “
Distance-Based Position Analysis of the Three Seven-Link Assur Kinematic Chains
,”
Mech. Mach. Theory
,
46
(
2
), pp.
112
126
.10.1016/j.mechmachtheory.2010.10.004
21.
Graver
,
J.
,
2001
,
Counting on Frameworks: Mathematics to Aid the Design of Rigid Structures
,
The Mathematical Association of America
,
Oberlin, OH
.
22.
Wampler
,
C.
,
2001
, “
Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex-Plane Formulation
,”
J. Mech. Des.
,
123
(
3
), pp.
382
387
.10.1115/1.1372192
23.
Waldron
,
K.
, and
Sreenivasan
,
S.
,
1996
, “
A Study of the Solvability of the Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage
,”
J. Mech. Des.
,
118
(
3
), pp.
390
395
.10.1115/1.2826898
24.
Rojas
,
N.
, and
Thomas
,
F.
,
2012
, “
On Closed-Form Solutions to the Position Analysis of Baranov Trusses
,”
Mech. Mach. Theory
,
50
, pp.
179
196
.10.1016/j.mechmachtheory.2011.10.010
25.
Porta
,
J.
,
Ros
,
L.
,
Creemers
,
T.
, and
Thomas
,
F.
,
2007
, “
Box Approximations of Planar Linkage Configuration Spaces
,”
J. Mech. Des.
,
129
(
4
), pp.
397
405
.10.1115/1.2437808
26.
Pennock
,
G.
, and
Raje
,
N.
,
2004
, “
Curvature Theory for the Double Flier Eight-Bar Linkage
,”
Mech. Mach. Theory
,
39
(
7
), pp.
665
679
.10.1016/j.mechmachtheory.2004.01.003
You do not currently have access to this content.