A novel parallel-kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz) is presented. Geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via nonlinear finite elements analysis (FEA). A proof-of-concept prototype is fabricated to validate the predicted large range and decoupled motion capabilities. The analysis and the hardware prototype demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the nonlinear FEA predicts cross-axis errors of less than 7.8%, parasitic rotations less than 10.8 mrad, less than 14.4% lost motion, actuator isolation better than 1.5%, and no perceptible motion direction stiffness variation.

References

References
1.
Jones
,
R. V.
,
1962
, “
Some Uses of Elasticity in Instrument Design
,”
J. Sci. Instrum.
,
39
, pp.
193
203
.10.1088/0950-7671/39/5/303
2.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
New York
.
3.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
4.
Awtar
,
S.
,
Ustick
,
J.
, and
Sen
,
S.
,
2011
, “
An XYZ Parallel Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom
,”
Proceedings of ASME IDETC/CIE
,
Washington DC
, Paper No. 47713.
5.
Fischer
,
F. L.
,
1981
, “
Symmetrical 3 DOF Compliance Structure
,” U.S. Patent No. 4,447,048.
6.
Bednorz
,
J. G.
,
Hollis
,
R. L.
, Jr.
,
Lanz
,
M.
,
Pohl
,
W. D.
, and
Yeack-Scranton
,
C. E.
,
1985
, “
Piezoelectric XY Positioner
,” U.S. Patent No. 4,520,570.
7.
Davies
,
P. A.
,
2001
, “
Positioning Mechanism
,” U.S. Patent No. 6,193,226.
8.
Dagalakis
,
N. G.
, and
Amatucci
,
E.
,
2001
, “
Kinematic Modeling of a 6 Degree of Freedom Tri-Stage Micro-Positioner
,”
Proceedings of ASPE 16th Annual Meeting
,
Crystal City, VA
.
9.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
,
2008
, “
A Novel Parallel-Kinematics Mechanisms for Integrated, Multi-Axis Nanopositioning—Part 1: Kinematics and Design for Fabrication
,”
Precis. Eng.
,
32
(
1
), pp.
7
19
.10.1016/j.precisioneng.2007.03.001
10.
Hicks
,
T. R.
, and
Atherton
,
P. D.
,
1997
,
The Nanopositioning Book
,
Queensgate Instruments Ltd.
, Torquay, UK.
11.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
,
2007
, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
,
15
(5)
, pp.
802
823
.10.1109/TCST.2007.903345
12.
Jordan
,
S.
, and
Lula
,
B.
,
2005
, “
Nanopositioning: The Technology and the Options
,”
The 2005 Photonics Handbook
,
Laurin Publications, Pittsfield, MA
.
13.
Dai
,
G.
,
Pohlenz
,
F.
,
Danzebrink
,
H.-U.
,
Xu
,
M.
,
Hasche
,
K.
, and
Wilkening
,
G.
,
2004
, “
Metrological Large Range Scanning Probe Microscope
,”
Rev. Sci. Instrum.
,
75
(
4
), pp.
962
969
.10.1063/1.1651638
14.
Sinno
,
A.
,
Ruaux
,
P.
,
Chassagne
,
L.
,
Topcu
,
S.
, and
Alayli
,
Y.
,
2007
, “
Enlarged Atomic Force Microscopy Scanning Scope: Novel Sample-Holder Device With Millimeter Range
,”
Rev. Sci. Instrum.
,
78
(
9
), pp.
1
7
.10.1063/1.2773623
15.
Wouters
,
D.
, and
Schubert
,
U. S.
,
2004
, “
Nanolithography and Nanochemistry: Probe-Related Patterning Techniques and Chemical Modification for Nanometer-Sized Devices
,”
Angew. Chem., Int. Ed.
,
43
(
19
), pp.
2480
2495
.10.1002/anie.200300609
16.
Beeby
,
S.
,
Tudor
,
M.
, and
White
,
N.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
12
, pp.
R175
R195
.10.1088/0957-0233/17/12/R01
17.
Mitcheson
,
P. D.
,
Rao
,
G. K.
, and
Green
,
T. C.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.10.1109/JPROC.2008.927494
18.
Smith
,
S. T.
, and
Seugling
,
R. M.
,
2006
, “
Sensor and Actuator Considerations for Precision, Small Machines
,”
Precis. Eng.
,
30
(
3
), pp.
245
264
.10.1016/j.precisioneng.2005.10.003
19.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.10.1115/1.2735342
20.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME Press
,
New York
.
21.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.10.1016/j.precisioneng.2009.06.008
22.
Su
,
H.-J.
, and
Tari
,
H.
,
2010
, “
Realizing Orthogonal Motions With Wire Flexures Connected in Parallel
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121002
.
23.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
J. Mech. Rob.
,
2
(
4
), p.
041006
.
24.
Culpepper
,
M. L.
, and
Anderson
,
G.
,
2004
, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
,
28
(
4
), pp.
469
482
.10.1016/j.precisioneng.2004.02.003
25.
Yamakawa
,
K.
,
Furutani
,
K.
, and
Mohri
,
N.
,
1999
, “
XYZ-Stage for Scanning Probe Microscope by Using Parallel Mechanism
,”
Proceedings of ASME DETC
.
26.
Li
,
Y.
, and
Xu
,
Q.
,
2005
, “
Kinematic Design of a Novel 3-DOF Compliant Parallel Manipulator for Nanomanipulation
,”
Proceedings of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Monterey, CA
.
27.
Arai
,
T.
,
Herve
,
J. M.
, and
Tanikawa
,
T.
,
1996
, “
Development of 3 DOF Micro Finger
,”
Proceedings of Intelligent Robots and Systems '96
.
28.
Tang
,
X.
, and
Chen
,
I. M.
,
2006
, “
A Large-Displacement and Decoupled XYZ Flexure Parallel Mechanism for Micromanipulation
,”
Proceedings of IEEE International Conference on Automation Science and Engineering
.
29.
Hao
,
G.
, and
Kong
,
X.
,
2009
, “
A 3-DOF Translational Compliant Parallel Manipulator Based on Flexure Motion
,”
Proceedings of ASME IDETC
, Paper No. 49040.
30.
Li
,
F.
,
Wu
,
M. C.
,
Choquette
,
K. D.
, and
Crawford
,
M. H.
,
1997
, “
Self-Assembled Microactuated XYZ Stages for Optical Scanning and Alignment
,”
Proceedings of Transducers '97
,
Chicago
.
31.
Ando
,
Y.
,
2004
, “
Development of Three-Dimensional Electrostatic Stages for Scanning Probe Microscope
,”
Sens. Actuators, A
,
114
(
2–3
), pp.
285
291
.10.1016/j.sna.2003.12.004
32.
Mcneil
,
A. C.
,
Li
,
G.
, and
Koury
,
D. N.
,
2005
, “
Single Proof Mass 3 Axis MEMS Transducer
,” U.S. Patent No. 6,936,492.
33.
Xinyu
,
L.
,
Kim
,
K.
, and
Sun
,
Y.
,
2007
, “
A MEMS Stage for 3-Axis Nanopositioning
,”
J. Micromech. Microeng.
,
17
(
9
), pp.
1796
1802
.
34.
Sarkar
,
N.
,
Geisberger
,
A.
, and
Ellis
,
M. D.
,
2004
, “
Fully Released MEMS XYZ Flexure Stage With Integrated Capacitive Feedback
,” U.S. Patent No. 6,806,991.
36.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.10.1115/1.2717231
37.
Awtar
,
S.
,
2004
, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,” Sc.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
38.
Trahair
,
N. S.
,
2011
, “
Wagner's Beam Cycle
,” Research Report No. R916,
School of Civil Engineering, University of Sydney
,
NSW, Australia
.
39.
Sen
,
S.
,
2012
, “
Closed Form Analytical Models for Design of Flexure Elements and Mechanisms
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
You do not currently have access to this content.