The dual-rod slider rocker mechanism is equivalent to two traditional single-rod sliders that share a common rocker, where the sliders translate along two opposite directions. Unlike a single-rod system, the dual-rod mechanism is unique, in the sense that the two sliders do not translate the same distance for the same rocker rotation. In this paper, an optimal kinematic and dynamic analysis of the dual-rod slider rocker mechanism is presented. This analysis is supplemented by an application to modular robotic coupling, in which the mechanism is employed by a torque recirculation scheme to enable three independent modes of operation via a single motor. Simulation, finite element analysis, and experimental results validate the kinematic properties of this mechanism, the rigidity of the proposed docking interface, and its three modes of operation. We conclude that the compactness of the dual-rod mechanism, and its unique kinematic properties, exhibits a broad industrial value for applications where size and weight are a critical design constraint, such as space and mobile robotics.

References

References
1.
Smith
,
J. E.
,
Smith
,
J. C.
, and
McKisic
,
A. D.
,
1991
, “
A Comparative Study of the Stiller-Smith and Slider-Crank Mechanisms for Eight-Cylinder Internal Combustion Engine Use
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
350
358
.10.1115/1.2906237
2.
Liniecki
,
A.
,
1970
, “
Synthesis of a Slider-Crank Mechanism With Consideration of Dynamic Effects
,”
J. Mech.
,
5
(
3
), pp.
337
349
.10.1016/0022-2569(70)90066-2
3.
Lieh
,
J.
,
1994
, “
Dynamic Modeling of a Slider-Crank Mechanism With Coupler and Joint Flexibility
,”
Mech. Mach. Theory
,
29
(
1
), pp.
139
147
.10.1016/0094-114X(94)90026-4
4.
Zhang
,
W. J.
, and
Li
,
Q.
,
2006
, “
A Closed-Form Solution to the Crank Position Corresponding to the Maximum Velocity of the Slider in a Centric Slider-Crank Mechanism
,”
ASME J. Mech. Des.
,
128
,
654
656
.10.1115/1.2181997
5.
Figliolini
,
G.
,
Conte
,
M.
, and
Rea
,
P.
,
2012
, “
Algebraic Algorithm for the Kinematic Analysis of Slider-Crank/Rocker Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011003
.10.1115/1.4005527
6.
Soylemez
,
E.
,
2002
, “
Classical Transmission-Angle Problem for Slider-Crank Mechanisms
,
Mech. Mach. Theory
,
37
(
4
), pp.
419
425
.10.1016/S0094-114X(01)00083-0
7.
Russell
,
K.
, and
Sodhi
,
S. R.
,
2005
, “
On the Design of Slider-Crank Mechanisms. Part I: Multi-Phase Motion Generation
,”
Mech. Mach. Theory
,
40
(
3
), pp.
285
299
.10.1016/j.mechmachtheory.2004.07.009
8.
Tanik
,
E.
,
2011
, “
Transmission Angle in Compliant Slider-Crank Mechanism
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1623
1632
.10.1016/j.mechmachtheory.2011.07.001
9.
Myszka
,
D.
, and
Murray
,
A.
,
2010
, “
Slider-Cranks as Compatibility Linkages for Parametrizing Center-Point Curves
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021007
.10.1115/1.4001096
10.
Erkaya
,
S.
,
Su
,
S.
, and
Uzmay
,
I.
,
2007
, “
Dynamic Analysis of a Slider–Crank Mechanism With Eccentric Connector and Planetary Gears
,”
Mech. Mach. Theory
,
42
(
4
), pp.
393
408
.10.1016/j.mechmachtheory.2006.04.011
11.
Yi-Ming
,
W.
,
2005
, “
The Dynamics of a Slider-Crank Mechanism With an Initially Curved Coupler Under Two-Component Parametric Resonance
,”
J. Sound Vib.
,
280
(
3–5
), pp.
815
835
.10.1016/j.jsv.2003.12.037
12.
Fung
,
R.-F.
,
1996
, “
Dynamic Analysis of the Flexible Connecting Rod of a Slider-Crank Mechanism
,”
ASME J. Vibr. Acoust.
,
118
, pp.
687
689
.10.1115/1.2888353
13.
Fallahi
,
B.
,
Lai
,
S.
, and
Venkat
,
C.
,
1995
, “
A Finite Element Formulation of a Flexible Slider Crank Mechanism Using Local Coordinates
,”
ASME J. Dyn. Syst., Meas., Control
,
117
, pp.
329
334
.10.1115/1.2799123
14.
Tadjbakhsh
,
I.
, and
Younis
,
C.
,
1986
, “
Dynamic Stability of the Flexible Connecting Rod of a Slider Crank Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
108
, pp.
487
496
.10.1115/1.3258760
15.
Khemili
,
I.
, and
Romdhane
,
L.
,
2008
, “
Dynamic Analysis of a Flexible Slider–Crank Mechanism With Clearance
,”
Eur. J. Mech. A/Solids
,
27
(
5
), pp.
882
898
.10.1016/j.euromechsol.2007.12.004
16.
Antonescu
,
P.
, and
Udriste
,
P. C.
,
1973
, “
Synthesis of Spatial Slider-Crank Mechanism for Given Slider Stroke and Crank Length
,”
Mech. Mach. Theory
,
8
(
2
), pp.
257
269
.10.1016/0094-114X(73)90060-8
17.
Premkumar
,
P.
,
Dhall
,
S. R.
, and
Kramer
,
S. N.
,
1988
, “
Selective Precision Synthesis of the Spatial Slider Crank Mechanism for Path and Function Generation
,”
J. Mech. Trans.
,
110
, pp.
295
302
.10.1115/1.3267461
18.
Parlaktas
,
V.
, and
Tanik
,
E.
,
2011
, “
Partially Compliant Spatial Slider–Crank (RSSP) Mechanism
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1707
1718
.10.1016/j.mechmachtheory.2011.06.010
19.
Shoup
,
T. E.
,
1984
, “
The Design of an Adjustable, Three Dimensional Slider Crank Mechanism
,”
Mech. Mach. Theory
,
19
(
1
), pp.
107
111
.10.1016/0094-114X(84)90012-0
20.
Yan
,
H.-S.
, and
Liu
,
J.-Y.
,
1993
, “
Geometric Design and Machining of Variable Pitch Lead Screws With Cylindrical Meshing Elements
,”
ASME J. Mech. Des.
115
, pp.
490
495
.10.1115/1.2919216
21.
Hollander
,
K.
, and
Sugar
,
T. G.
,
2008
, “
Design of Lightweight Lead Screw Actuators for Wearable Robotic Applications
,”
ASME J. Mech. Des.
,
128
, pp.
644
648
.10.1115/1.2181995
22.
Yim
,
M.
,
Shen
,
W.-M.
,
Salemi
,
B.
,
Rus
,
D.
,
Moll
,
M.
,
Lipson
,
H.
,
Klavins
,
E.
, and
Chirikjian
,
G. S.
,
2007
, “
Modular Self-Reconfigurable Robot Systems: Challenges and Opportunities for the Future
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
2
11
.10.1109/MRA.2007.339623
23.
Moubarak
,
P.
, and
Ben-Tzvi
,
P.
,
2012
, “
Modular Reconfigurable Mobile Robotics
,”
Rob. Auton. Syst.
,
60
(
12
), pp.
1648
1663
.10.1016/j.robot.2012.09.002
24.
Sao
,
T.
,
Song
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031009
.10.1115/1.4001781
25.
Liu
,
G. P.
,
Yang
,
J. B.
, and
Whidborne
,
J. F.
,
2002
,
Multiobjective Optimisation and Control
,
1st ed.
,
Research Studies Press
,
Baldock, Hertfordshire, England
, p.
4
.
26.
Liu
,
M.
,
Cao
,
Y.
,
Zhang
,
Q.
, and
Zhou
,
H.
,
2010
, “
Kinematics and Dynamics Simulation of the Slider-Crank Mechanism Based on Matlab/Simulink
,”
International Conference on Computer Application and System Modeling (ICCASM'10)
,
Taiyuan, China
.
27.
Østergaard
,
E. H.
, and
Kassow
,
K.
,
2006
, “
Design of the ATRON Lattice-Based Self-Reconfigurable Robot
,”
Auton. Rob.
,
21
(
2
), pp.
165
183
.10.1007/s10514-006-8546-1
28.
Zykov
,
V.
,
Mytilinaois
,
E.
,
Desnoyer
,
M.
, and
Lipson
,
H.
,
2007
, “
Evolved and Designed Self-Reproducing Modular Robotics
,”
IEEE Trans. Rob.
,
23
(
2
), pp.
308
319
.10.1109/TRO.2007.894685
29.
Park
,
M.
,
Chitta
,
S.
,
Teichman
,
A.
, and
Yim
,
M.
,
2008
, “
Automatic Configuration Recognition Methods in Modular Robots
,”
Int. J. Robot. Res.
,
27
(
3–4
), pp.
403
421
.10.1177/0278364907089350
30.
Yim
,
M.
,
Zhang
,
Y.
,
Roufas
,
K.
,
Duff
,
D.
, and
Eldershaw
,
C.
,
2002
, “
Connecting and Disconnecting for Chain Self-Reconfiguration With PolyBot
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
442
451
.10.1109/TMECH.2002.806221
31.
Ünsal
,
C.
,
Kiliççöte
,
H.
, and
Khosla
,
P. K.
,
2001
, “
A 3-D Modular Self-Reconfigurable Bipartite Robotic System: Implementation and Motion Planning
,”
Auton. Rob.
,
10
(
1
), pp.
23
40
.10.1023/A:1026592302259
32.
Brown
,
H. B.
,
Vande Weghe
,
J. M.
,
Bererton
,
C. A.
, and
Khosla
,
P. K.
,
2002
, “
Millibot Train for Enhanced Mobility
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
452
461
.10.1109/TMECH.2002.806226
33.
Moubarak
,
P.
, and
Ben-Tzvi
,
P.
,
2011
, “
STORM Animation
,” retrieved on February 2011, http://www.seas.gwu.edu/∼bentzvi/STORM/STORM_VR_Animation.html
34.
Moubarak
,
P.
,
Ben-Tzvi
,
P.
,
Ma
,
Z.
, and
Alvarez
,
E.
,
2012
, “
Demonstration of the Three Modes of Operation of the Tri-Partite Docking Interface
,” retrieved on January 2012, http://www.seas.gwu.edu/∼bentzvi/STORM/DOK.html
You do not currently have access to this content.