This paper addresses the design of wire actuated steerable electrode arrays for optimal insertions in cochlear implant surgery. These underactuated electrode arrays are treated as continuum robots which have an embedded actuation strand inside their flexible medium. By pulling on the actuation strand, an electrode array assumes a minimum-energy shape. The problems of designing optimal actuation strand placement are addressed in this paper. Based on the elastic modeling of the steerable electrode arrays proposed in this paper, an analytical solution of the strand placement is solved to minimize the shape discrepancy between a bent electrode array and a given target curve defined by the anatomy. Using the solved strand placement inside the steerable electrode array, an optimized insertion path planning with robotic assistance is proposed to execute the insertion process. Later, an optimization algorithm is presented to minimize the shape discrepancy between an inserted electrode array and a given target curve during the whole insertion process. Simulations show a steerable electrode array bending using the elastic model and robot insertion path planning with optimized strand placement. Two experiments have been conducted to validate the elastic model and algorithms.

References

References
1.
Wardrop
,
P.
,
Whinney
,
D.
,
Rebscher
,
S. J.
,
Luxford
,
W.
, and
Leake
,
P.
,
2005
, “
A Temporal Bone Study of Insertion Trauma and Intracochlear Position of Cochlear Implant Electrodes. II: Comparison of Spiral Clarion and HiFocus II Electrodes
,”
Hear. Res.
,
203
, pp.
68
79
.10.1016/j.heares.2004.11.007
2.
Wardrop
,
P.
,
Whinney
,
D.
,
Rebscher
,
S. J.
,
Roland
,
J. J. T.
,
Luxford
,
W.
, and
Leake
,
P. A.
,
2005
, “
A Temporal Bone Study of Insertion Trauma and Intracochlear Position of Cochlear Implant Electrodes. I: Comparison of Nucleus Banded and Nucleus Contour(TM) Electrodes
,”
Hear. Res.
,
203
, pp.
54
67
.10.1016/j.heares.2004.11.006
3.
Adunka
,
O.
,
Gstoettner
,
W.
,
Hambek
,
M.
,
Unkelbach
,
M. H.
,
Radeloff
,
A.
, and
Kiefer
,
J.
,
2004
, “
Preservation of Basal Inner Ear Structures in Cochlear Implantation
,”
ORL
,
66
, pp.
306
312
.10.1159/000081887
4.
Adunka
,
O.
,
Kiefer
,
J.
,
Unkelbach
,
M. H.
,
Lehnert
,
T.
, and
Gstoettner
,
W.
,
2004
, “
Development and Evaluation of an Improved Cochlear Implant Electrode Design for Electric Acoustic Stimulation
,”
Laryngoscope
,
114
, pp.
1237
1241
.10.1097/00005537-200407000-00018
5.
Eshraghi
,
A. A.
,
Yang
,
N. W.
, and
Balkany
,
T. J.
,
2003
, “
Comparative Study of Cochlear Damage With Three Perimodiolar Electrode Designs
,”
Laryngoscope
,
113
, pp.
415
419
.10.1097/00005537-200303000-00005
6.
Maeno
,
T.
,
Hiromitsu
,
S.
, and
Kawai
,
T.
,
2000
, “
Control of Grasping Force by Detecting Stick/Slip Distribution at the Curved Surface of an Elastic Finger
,” IEEE International Conference on Robotics and Automation,
San Francisco, CA, USA
, p.
3895
.
7.
Gstoettner
,
W.
,
Plenk
,
H.
, Jr.
,
Franz
,
P.
,
Hamzavi
,
J.
,
Baumgartner
,
W.
,
Czerny
,
C.
, and
Ehrenberger
,
K.
,
1997
, “
Cochlear Implant Deep Electrode Insertion: Extent of Insertional Trauma
,”
Acta Oto-Laryngol.
,
117
, pp.
274
277
.10.3109/00016489709117786
8.
Roland
,
J. T. J.
,
2005
, “
A Model for Cochlear Implant Electrode Insertion and Force Evaluation: Results With a New Electrode Design and Insertion Technique
,”
Laryngoscope
,
15
, pp.
1325
1339
.10.1097/01.mlg.0000167993.05007.35
9.
Fishman
,
A.
,
Roland
,
J. T.
, Jr.
,
Alexiades
,
G.
,
Mierzwinski
,
J.
, and
Cohen
,
N. L.
,
2003
, “
Fluoroscopically Assisted Cochlear Implantation
,”
Otol. Neurotol.
,
24
, pp.
882
886
.10.1097/00129492-200311000-00010
10.
Leob
,
G. E.
,
Peck
,
R. A.
, and
Smith
,
D. W.
,
1995
, “
Microminiature Molding Techniques for Cochlear Electrode Arrays
,”
J. Neurosci. Methods
,
63
, pp.
85
92
.10.1016/0165-0270(95)00091-7
11.
Adunka
,
O.
,
Kiefer
,
J.
,
Unkelbach
,
M.
, and
Lehnert
,
T.
,
2004
, “
Development and Evaluation of an Improved Cochlear Implant Electrode Design for Electric Acoustic Stimulation
,”
Laryngoscope
,
114
, pp.
1237
1241
.10.1097/00005537-200407000-00018
12.
Kha
,
H. N.
,
Chen
,
B. K.
,
Clark
,
G. M.
, and
Jones
,
R.
,
2004
, “
Stiffness Properties for Nucleus Standard Straight and Contour Electrode Arrays
,”
Med. Eng. Phys.
,
26
, pp.
677
685
.10.1016/j.medengphy.2004.05.001
13.
Chen
,
B. K.
,
Clark
,
G. M.
, and
Jones
,
R.
,
2003
, “
Evaluation of Trajectories and Contact Pressures for the Straight Nucleus Cochlear Implant Electrode Array—A Two Dimensional Application of Finite Element Analysis
,”
Med. Eng. Phys.
,
25
, pp.
141
147
.10.1016/S1350-4533(02)00150-9
14.
Frijns
,
J. H. M.
,
Briarie
,
J. J.
, and
Grote
,
J. J.
,
2001
, “
The Importance of Human Cochlear Anatomy for the Results of Modiolus-Hugging Multi-Channel Cochlear Implants
,”
Otol. Neurotol.
,
22
, pp.
340
349
.10.1097/00129492-200105000-00012
15.
Wang
,
J.
,
Gulari
,
M.
, and
Wise
,
K. D.
,
2005
, “
An Integrated Position-Sensing System for a MEMS-Based Cochlear Implant
,”
Electron Devices Meeting, IEDM Technical Digest
,
IEEE International
, pp.
121
124
.
16.
Wang
,
J.
,
Gulari
,
M. N.
, and
Wise
,
K. D.
,
2006
, “
A Parylene-Silicon Cochlear Electrode Array With Integrated Position Sensors
,”
Engineering in Medicine and Biology Society, EMBS 06, 28th Annual International Conference of the IEEE
, pp.
3170
3173
.
17.
Zhang
,
J.
,
Bhattacharyya
,
S.
, and
Simaan
,
N.
,
2009
, “
Model and Parameter Identification of Friction During Robotic Insertion of Cochlear-Implant Electrode Arrays
,”
IEEE International Conference on Robotics and Automation
,
ICRA '09
, pp.
3859
3864
.
18.
Zhang
,
J.
,
Xu
,
K.
,
Simaan
,
N.
, and
Manolidis
,
S.
,
2006
, “
A Pilot Study of Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays
,”
Med. Image Comput. Comput. Assist. Interv.
,
9
, part I, pp.
33
40
.
19.
Hussong
,
A.
,
Rau
,
T.
,
Ortmaier
,
T.
,
Heimann
,
B.
,
Lenarz
,
T.
, and
Majdani
,
O.
,
2009
, “
An Automated Insertion Tool for Cochlear Implants: Another Step Towards Atraumatic Cochlear Implant Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
5
(
2
), pp. 163–171.
20.
Rau
,
T.
,
Hussong
,
A.
,
Leinung
,
M.
,
Lenarz
,
T.
, and
Majdani
,
O.
,
2009
, “
Automated Insertion of Preformed Cochlear Implant Electrodes: Evaluation of Curling Behaviour and Insertion Forces on an Artificial Cochlear Model
,”
Int. J. Comput. Assist. Radiol. Surg.
,
5
(
2
), pp. 173–181.
21.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
,
1991
, “
Flexible Microactuator for Miniature Robots
,”
IEEE International Conference on Robotics and Automation
, pp.
204
209
.
22.
Chen
,
B.
,
Kha
,
H.
, and
Clark
,
G.
,
2006
, “
Development of a Steerable Cochlear Implant Electrode Array
,”
3rd Kuala Lumpur International Conference on Biomedical Engineering
, pp.
607
610
.
23.
Giesler
,
D. C.
,
1998
,
From Sound to Synapse: Physiology of the Mammalian Ear
,
Oxford University Press
,
New York
.
24.
Robinson
,
G.
, and
Davies
,
J.
,
1999
, “
Continuum Robots—A State of the Art
,”
IEEE International Conference on Robotics and Automation
, pp.
2849
2853
.
25.
Chirikjian
,
G.
, and
Burdick
,
J.
,
1995
, “
Kinematically Optimal Hyper-Redundant Manipulator Configurations
,”
IEEE Trans. Rob. Autom.
,
11
, pp.
794
806
.10.1109/70.478427
26.
Webster
,
R. J.
,
Romano
,
J. M.
, and
Cowan
,
N. J.
,
2009
, “
Mechanics of Precurved-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
25
, pp.
67
78
.10.1109/TRO.2008.2006868
27.
Zhang
,
J.
,
Roland
,
J. J. T.
,
Manolidis
,
S.
, and
Simaan
,
N.
,
2009
, “
Optimal Path Planning for Robotic Insertion of Steerable Electrode Arrays in Cochlear Implant Surgery
,”
J. Med. Devices
,
3
, p.
011001
.10.1115/1.3039513
28.
Zhang
,
J.
,
Wei
,
W.
,
Manolidis
,
S.
,
Roland
,
J.
, and
Simaan
,
N.
,
2008
, “
Path Planning and Workspace Determination for Robot-Assisted Insertion of Steerable Electrode Arrays for Cochlear Implant Surgery
,”
Med. Image Comput. Comput. Assist. Interv.
,
11
(
2
), pp.
692
700
.
29.
Dupont
,
P. E.
,
Lock
,
J.
,
Itkowitz
,
B.
, and
Butler
,
E.
,
2010
, “
Design and Control of Concentric-Tube Robots
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
209
225
.10.1109/TRO.2009.2035740
30.
Rucker
,
D. C.
,
Webster
,
R. J.
,
Chirikjian
,
G. S.
, and
Cowan
,
N. J.
,
2010
, “
Equilibrium Conformations of Concentric-Tube Continuum Robots
,”
Int. J. Rob. Res.
,
29
(
10
), pp.
1263
1280
.10.1177/0278364910367543
31.
Lyons
,
L. A.
,
Iii
,
R. J. W.
, and
Alterovitz
,
R.
,
2009
, “
Motion Planning for Active Cannulas
,”
IEEE/RSJ International Conference on Intelligent Robots and System
, pp.
801
806
.
32.
Webster
,
R. J. I.
,
Cowan
,
N. J.
,
Chirikjian
,
G.
, and
Okamura
,
A. M.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
.10.1177/0278364906065388
33.
Alterovitz
,
R.
, and
Goldberg
,
K.
,
2010
, “
Algorithms for Steerable Needles Using Inverse Kinematics
,”
Int. J. Rob. Res.
,
29
(
7
), pp.
789
800
.10.1177/0278364909352202
34.
Glozman
,
D.
, and
Shoham
,
M.
,
2007
, “
Image-Guided Robotic Flexible Needle Steering
,”
IEEE Trans. Rob.
,
23
(
3
), pp.
459
467
.10.1109/TRO.2007.898972
35.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
,
10
, pp.
343
354
.10.1109/70.294209
36.
Graham
,
A.
,
1981
,
Kronecker Products and Matrix Calculus With Applications
,
Ellis Horwood Limited
, New York.
37.
Cohen
,
L.
,
Xu
,
J.
,
Xu
,
S. A.
, and
Clark
,
G. M.
,
1996
, “
Improved and Simplified Methods for Specifying Positions of the Electrode bands of a Cochlear Implant Array
,”
Am. J. Otol.
,
17
, pp.
859
865
.
38.
Ketten
,
D. R.
,
Skinner
,
M. W.
,
Wang
,
G.
,
Vannier
,
M. W.
,
Gates
,
G. A.
, and
Neely
,
J. G.
,
1998
, “
In Vivo Measures of Cochlear Length and Insertion Depth of Nucleus Cochlear Implant Electrode Arrays
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
,
175
, pp.
1
16
.
39.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
Springer
,
New York
.
40.
Yoo
,
S. K.
,
Wang
,
G.
,
Rubinstein
,
J. T.
,
Skinner
,
M. W.
, and
Vannier
,
M. W.
,
2000
, “
Three-Dimensional Modeling and Visualization of the Cochlea on the Internet
,”
IEEE Trans. Inf. Technol. Biomed.
,
4
, pp.
144
–151.10.1109/4233.845207
41.
Zhang
,
J.
,
Manolidis
,
S.
,
Roland
,
T. J.
, and
Simaan
,
N.
,
2008
, “
Path Planning and Workspace Determination for Robot-Assisted Insertion of Steerable Electrode Arrays for Cochlear Implant Surgery
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI'2008)
.
42.
See supplementary material at E-JMROA6. The video shows a comparison of the insertion process of a straight electrode and a steerable electrode with optimized strand placement and steerable insertion path planning. The video is available at: http://research.vuse.vanderbilt.edu/arma/Media/JMR_cochlea1.wmv.
You do not currently have access to this content.