The workspace of a Stewart platform is a complex six-dimensional volume embedded in the Cartesian space defined by six pose parameters. Because of its large dimension and complex shape, this volume is difficult to compute and represent, and comprehension on its structure is being gained by studying its three-dimensional slices. While successful methods have been given to determine the constant-orientation slice, the computation and appropriate visualization of the constant-position slice (also known as the orientation workspace) has proved to be a challenging task. This paper presents a unified method for computing both of such slices, and any other ones defined by fixing three pose parameters, on general Stewart platforms possibly involving mechanical limits on the active and passive joints. Advantages over existing methods include, in addition to the previous, the ability to determine all connected components of the workspace, and any motion barriers present in its interior.

References

References
1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
, pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
2.
McInroy
,
J. E.
, and
O'Brien
,
G. W.
,
1999
, “
Precise, Fault-Tolerant Precision Pointing Using a Stewart Platform
,”
IEEE/ASME Trans. Mechatron.
,
4
, pp.
91
95
.10.1109/3516.752089
3.
van Silfhout
,
R. G.
,
1999
, “
High-Precision Hydraulic Stewart Platform
,”
Rev. Sci. Instrum.
,
70
, pp.
3488
3494
.10.1063/1.1149942
4.
Preumont
,
A.
,
Horodinca
,
M.
,
Romanescu
,
I.
,
de Marneffe
,
B.
,
Avraam
,
M.
,
Deraemaeker
,
A.
,
Bossens
,
F.
, and
Hanieh
,
A.
,
2007
, “
A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform
,”
J. Sound Vib.
,
300
, pp.
644
661
.10.1016/j.jsv.2006.07.050
5.
Shaw
,
D.
, and
Chen
,
Y.
,
2001
. “
Cutting Path Generation of the Stewart Platform-Based Milling Machine Using an End-Mill
,”
Int. J. Prod. Res.
,
39
, pp.
1367
1383
.10.1080/00207540010023529
6.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2006
, “
Kinematics and Workspace Analysis of a Three-Axis Parallel Manipulator: The Orthoglide
,”
Robotica
,
24
(
1
), pp.
39
50
.10.1017/S0263574704000347
7.
Shoham
,
M.
,
Burman
,
M.
,
Zehavi
,
E.
,
Joskowicz
,
L.
,
Batkilin
,
E.
, and
Kunicher
,
Y.
,
2003
, “
Bone-Mounted Miniature Robot for Surgical Procedures: Concept and Clinical Applications
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
893
901
.10.1109/TRA.2003.817075
8.
Cortés
,
J.
, and
Siméon
,
T.
,
2003
, “
Probabilistic Motion Planning for Parallel Mechanisms
,”
Proceedings of the International Conference on Robotics and Automation
, Vol. 3, pp.
4354
4359
.
9.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.10.1016/S0094-114X(99)00006-3
10.
Gosselin
,
C.
,
1990
, “
Determination of the Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
112
, pp.
331
336
.10.1115/1.2912612
11.
Merlet
,
J. P.
,
1992
, “
Geometrical Determination of the Workspace of a Constrained Parallel Manipulator
,”
Advances in Robot Kinematics
,
Ferrare
,
Italy
, Sept. 7–9, pp.
326
329
.
12.
Merlet
,
J.-P.
,
1999
, “
Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometries
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
902
916
.10.1177/02783649922066646
13.
Bonev
,
I.
, and
Ryu
,
J.
,
2001
, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
15
28
.10.1016/S0094-114X(00)00032-X
14.
Romdhane
,
L.
,
1994
, “
Orientation Workspace of Fully Parallel Mechanisms
,”
Eur. J. Mech, A/Solids
,
13
(
4
), pp.
541
553
.
15.
Merlet
,
J.-P.
,
1995
, “
Determination of the Orientation Workspace of Parallel Manipulators
,”
J. Intell. Rob. Syst.
,
13
(
2
), pp.
143
160
.10.1007/BF01254849
16.
Haug
,
E. J.
,
Luh
,
C.-M.
,
Adkins
,
F. A.
, and
Wang
,
J.-Y.
,
1996
, “
Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces
,”
ASME J. Mech. Des.
,
118
, pp.
228
234
.10.1115/1.2826874
17.
Pernkopf
,
F.
, and
Husty
,
M.
,
2006
, “
Workspace Analysis of Stewart-Gough-Type Parallel Manipulators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
220
(
7
), pp.
1019
1032
.10.1243/09544062JMES194
18.
Tsai
,
K.
, and
Lin
,
J.
,
2006
, “
Determining the Compatible Orientation Workspace of Stewart-Gough Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
10
), pp.
1168
1184
.10.1016/j.mechmachtheory.2005.12.002
19.
Jiang
,
Q.
, and
Gosselin
,
C.
,
2009
, “
Evaluation and Representation of the Theoretical Orientation Workspace of the Gough-Stewart Platform
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021004
.10.1115/1.3046137
20.
Luh
,
C. M.
,
Adkins
,
F. A.
,
Haug
,
E. J.
, and
Qiu
,
C. C.
,
1996
, “
Working Capability Analysis of Stewart Platforms
,”
ASME J. Mech. Des.
,
118
, pp.
220
227
.10.1115/1.2826873
21.
Abdel-Malek
,
K.
,
Adkins
,
F.
,
Yeh
,
H. J.
, and
Haug
,
E.
,
1997
, “
On the Determination of Boundaries to Manipulator Workspaces
,”
Rob. Comput. Integr. Manuf.
,
13
(
1
), pp.
63
72
.10.1016/S0736-5845(96)00023-3
22.
Bohigas
,
O.
,
Manubens
,
M.
, and
Ros
,
L.
,
2012
, “
A Complete Method for Workspace Boundary Determination on General Structure Manipulators
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
993
1006
.10.1109/TRO.2012.2196311
23.
Porta
,
J. M.
,
Ros
,
L.
,
Creemers
,
T.
, and
Thomas
,
F.
,
2007
, “
Box Approximations of Planar Linkage Configuration Spaces
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
397
405
.10.1115/1.2437808
24.
Porta
,
J. M.
,
Ros
,
L.
, and
Thomas
,
F.
,
2009
, “
A Linear Relaxation Technique for the Position Analysis of Multi-loop Linkages
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
225
239
.10.1109/TRO.2008.2012337
25.
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2006
, “
Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechanisms
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
1011
1017
.10.1109/TRO.2006.878983
26.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer-Verlag, Inc.
,
New York
.
27.
Bohigas
,
O.
,
Zlatanov
,
D.
,
Ros
,
L.
,
Manubens
,
M.
, and
Porta
,
J. M.
,
2012
, “
Numerical Computation of Manipulator Singularities
,”
Proceedings of the International Conference on Robotics and Automation
, pp. 1351–1358.
28.
Bohigas
,
O.
,
Zlatanov
,
D.
,
Manubens
,
M.
, and
Ros
,
L.
,
2012
, “
On the Numerical Classification of the Singularities of Robot Manipulators
,”
Proceedings of the ASME International Design Engineering Technical Conferences (in press)
.
You do not currently have access to this content.