A motion task can be given in various ways. It may be defined parametrically or discretely in terms of an ordered sequence of displacements or in geometric means. This paper studies a new type of motion analysis problem in planar kinematics that seeks to acquire geometric constraints associated with a planar motion task which is given either parametrically or discretely. The resulting geometric constraints can be used directly for type as well as dimensional synthesis of a physical device such as mechanical linkage that generates the constrained motion task. Examples are provided toward the end of the paper to illustrate how geometric constraints acquired can be used for task-oriented mechanism design.

References

References
1.
Reuleaux
,
F.
,
1875
,
Theoretische Kinematic, Fridrich Vieweg, Braunschweig, Germany
, (
English translation by A. B. W. Kennedy, The Kinematics of Machinery
, 1876, Reprinted Dover,
1963
).
2.
Artobolevsky
,
I. I.
,
1975
,
Mechanisms in Modern Engineering Design, in 2 Volumes (2288 mechanisms)
,
Mir Publishers
,
Moscow
.
3.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford
.
4.
Phillips
,
J.
,
1984
,
Freedom in Machinery
, Vol.
1
,
Cambridge University Press
,
Cambridge
.
5.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover Publication, Inc.
,
New York
.
6.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1997
,
Mechanism Design: Analysis and Synthesis
,
3rd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
7.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
8.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
9.
Erdman
,
A. G.
, ed.,
1993
,
Modern Kinematics: Developments in the Last Forty Years
,
J. Wiley and Sons
,
New York
.
10.
Freudenstein
,
F.
, and
Maki
,
E. R.
,
1979
, “
The Creation of Mechanisms According to Kinematic Structure and Functions
,”
Environ. Plann. B
,
6
, pp.
375
391
.10.1068/b060375
11.
Chiou
,
S. J.
, and
Kota
,
S.
,
1999
, “
Automated Conceptual Design of Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
467
495
.10.1016/S0094-114X(98)00037-8
12.
Moon
,
Y. M.
, and
Kota
,
S.
,
2002
, “
Automated Synthesis of Mechanisms Using Dual-Vector Algebra
,”
Mech. Mach. Theory
,
37
, pp.
143
166
.10.1016/S0094-114X(01)00073-8
13.
Yan
,
H. S.
,
1998
,
Creative Design of Mechanical Devices
,
Springer
,
Berlin
.
14.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton
.
15.
Mruthyunjaya
,
T. S.
,
2003
, “
Kinematic Structure of Yechanisms Revisited
,”
Mech. Mach. Theory
,
38
, pp.
279
230
.10.1016/S0094-114X(02)00120-9
16.
Hoeltzel
,
D. A.
, and
Chieng
,
W. H.
,
1990
, “
Knowledge-Based Approaches for the Creative Synthesis of Mechanisms
,”
CAD
,
22
, pp.
57
67
10.1016/0010-4485(90)90030-G.
17.
Yang
,
B.
,
Dasteris
,
P.
,
Datta
,
U.
, and
Kowalski
,
J.
,
1990
, “
An Integrated System for Design of Mechanisms by an Expert System—DOMES: Theory
,”
ASME J. Mech. Des.
,
112
, pp.
488
493
.
18.
Funtoura
Costa
,
L.
, and
Cesar
,
R. M.
,
2001
,
Shape Analysis and Classification: Theory and Practice
,
CRC Press
,
Boca Raton, FL
.
19.
Coxeter
,
H. S. M.
,
1974
,
Projective Geometry
,
2nd ed.
,
Springer-Verlag
,
New York
.
20.
Stolfi
,
J.
,
1991
,
Oriented Projective Geometry: A Framework for Geometric Computations
,
Academic Press
,
Boston
.
21.
Ge
,
Q. J.
, and
Ravani
,
B.
,
1994
, “
Computer-Aided Geometric Design of Motion Interpolants
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
756
762
.10.1115/1.2919447
22.
Jüttler
,
B.
, and
Wagner
,
M. G.
,
1996
, “
Computer Aided Design With Spatial Rational B-Spline Motions
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
193
201
.10.1115/1.2826869
23.
Purwar
,
A.
, and
Ge
,
Q. J.
,
2005
, “
On the Effect of Dual Weights in Computer Aided Design of Rational Motions
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
967
972
.10.1115/1.1906263
24.
Sarkisyan
,
Y. L.
,
Gupta
,
K. C.
, and
Roth
,
B
,
1973
, “
Kinematic Geometry Associated With the Least-Square Approximation of a Given Motion
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
503
510
.10.1115/1.3438183
25.
Chapra
,
S. C.
, and
Canale
,
R.
,
2001
,
Numerical Methods for Engineers: With Software and Programming Applications
,
McGraw-Hill
,
New York
.
26.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1996
,
Matrix Computations
,
3rd ed.
,
Johns Hopkins University Press
, Baltimore, MD.
27.
Artobolevsky
,
I. I.
,
1964
,
Mechanisms for the Generation of Plane Curves
,
Macmillan Co
,
New York
.
You do not currently have access to this content.