Hyper-redundant robots (HRR) have many more degrees of freedom (DOF) than required, which enable them to handle more constraints, such as those present in highly convoluted volumes. Consequently, they can serve in many robotic applications, while extending the reachability and maneuverability of the operator. Many degrees of freedom that furnish the HRR with its wide range of capabilities also provide its major challenges: mechanism design, control, and path planning. In this paper, we present a novel design of a HRR composed of 16DOF. The HRR is composed of two concentric structures: a passive backbone and an exoskeleton which carries self-weight as well as external loads. The HRR is 80 cm long, 7.7 cm in diameter, achieves high rigidity and accuracy and is capable of 180 deg bending. The forward kinematics of the HRR is presented along with the inverse kinematics of a link.

References

References
1.
Hirose
,
S.
, 1993,
Biologically Inspired Robots: Snake-Like Locomotors and Manipulators
,
Oxford University Press
,
UK
.
2.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
, 1994, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
,
10
, pp.
343
354
.
3.
Kier
,
W. M.
, and
Smith
,
K. K.
, 1985, “
Tongues, Tentacles, and Trunk: The Biomechanics of Movement in Muscular Hydrostats
,”
Zoolog. J. Linn. Soc.
,
8
, pp.
307
324
.
4.
Hannan
,
M. A.
, and
Walker
,
I. D.
, 1999, “
A Novel ‘Elephant’s Trunk’ Robot
,” presented at 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Atlanta, Georgia
.
6.
Miller
,
G.
, 2002,
Snake Robots for Research and Rescue
,
The MIT Press
,
Cambridge, MA
.
7.
Miller
,
G.
, http://www.doctorgavin.com/http://www.doctorgavin.com/, last accessed June 2003.
8.
Haith
,
G. L.
,
Thomas
,
H.
, and
Wright
,
A.
, 2000, “
A Serpentine Robot for Planetary and Asteroid Surface Exploration
,” presented as an oral presentation at the Fourth IAA International Conference on Low-Cost Planetary Missions, Laurel, MD.
9.
Ikeda
,
H.
, and
Takanashi
,
N.
, 1987, “
Joint Assembly Movable Like a Human Arm
,” U.S. Patent No. 4,683,406.
10.
Takanashi
,
N.
,
Aoki
,
K.
, and
Yashima
,
S.
, 1996, “
A Gait Control for the Hyper-Redundant Robot O-RO-CHI
,”
presented at the Proceedings of ROBOMEC ‘96
, Ube, Japan.
12.
Cieslak
,
R.
, and
Morecki
,
A.
, 1999, “
Elephant Trunk Type Elastic Manipulator—A Tool for Bulk and Liquid Materials Transportation
,”
Robotica
,
17
, pp.
11
16
.
13.
Ma
,
S.
,
Hirose
,
H.
, and
Yoshinada
,
H.
, 1995, “
Development of a Hyper-Redundant Multijoint Manipulator for Maintenance of Nuclear Reactors
,”
Int. J. Adv. Rob.
,
9
, pp.
281
300
.
14.
Wolf
,
A.
,
Choset
,
H.
,
Brown
,
H. B.
, and
Casciola
,
R.
, 2005, “
Design and Control of a Mobile Hyper-Redundant Urban Search and Rescue Robot
,”
Int. J. Adv. Rob.
,
19
, pp.
221
248
.
15.
Sujan
,
V. A.
, and
Dubowsky
,
S.
, 2004, “
Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
,
126
, pp.
29
39
.
16.
Hirose
,
S.
,
Ishii
,
T.
, and
Haishi
,
A.
, 2003, “
Float Arm V: Hyper Redundant Manipulator With Wire-Driven Weight-Compensation Mechanism
,”
Proceedings of the ICRA
, pp.
368
373
.
17.
Nobuyuki
,
I.
,
Norifumi
,
N.
,
Morikawa
,
K.
, and
Kondoh
,
K.
, 2010, “
Motion Control of a Hyper Redundant Manipulator Built by Serially Connecting Many Parallel Mechanism Units With a Few DOF
,”
Int. J. Autom. Technol.
,
4
(
4
), pp.
364
371
.
18.
Gallardo
,
J.
,
Orozco
,
H.
,
Rico
,
J. M.
, and
Gonzales-Galvan
,
E. J.
, 2009, “
A New Spatial Hyper-Redundant Manipulator
,”
Rob. Comput.-Integr. Manufact.
,
25
, pp.
703
708
.
20.
Shapiro
,
Y.
,
Gabor
,
K.
, and
Wolf
,
A.
, 2011, “
Bi-Bellows: Pneumatic Bending Actuator
,”
Sens. Actuators, A
,
167
(
2
), pp.
484
494
.
21.
Nakamura
,
Y.
,
Matsui
,
A.
,
Saito
,
T.
, and
Yoshimoto
,
K.
, 1995, “
Shape-Memory Alloy Active Forceps for Laparoscopic Surgery
,”
Proceedings of the ICRA’95
, pp.
2320
2327
.
22.
Dario
,
P.
,
Paggetti
,
C.
,
Troisfontaine
,
N.
,
Papa
,
E.
,
Ciucci
,
T.
,
Carrozza
,
M. C.
, and
Marcacci
,
M.
, 1997, “
A Miniature Steerable End-Effector for Application in an Integrated System for Computer-Assisted Arthroscopy
,”
Proceedings of the ICRA’97
, pp.
1573
1579
.
23.
Ivanescu
,
M.
,
Bizdoaca
,
N.
,
Florescu
,
M.
,
Popescu
,
N.
, and
Popescu
,
D.
, “
Frequency Criteria for Grasping Control of a Hyper Redundant Robot
,” 2010,
Proceedings of the ICRAM
, Anchorage, AK, May 3–8.
24.
Ning
,
K.
, and
Worgotter
,
F.
, 2009, “
A Novel Concept for Building a Hyper-Redundant Chain Robot
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1237
1248
.
25.
Zhang
,
Z.
,
Yang
,
G.
, and
Yeo
,
S. H.
, 2011, “
Inverse Kinematics of Modular Cable-Driven Snake-Like Robots With Flexible Backbones
,”
IEEE Conference on Automation and Mechatronics
, Qingdao, China, Sept. 17–19.
26.
Simaan
,
N.
,
Taylor
,
R. H.
, and
Flint
,
P.
, 2004, “
A Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-Like Slaves for Teleoperated Dextrous Surgical Tool Manipulation
,”
IEEE International Conference on Robotics and Automation
, pp.
351
357
.
27.
Kutzer
,
M. D. M.
,
Segreti
,
S. M.
,
Brown
,
C. Y.
,
Armand
,
M.
,
Taylor
,
R. H.
, and
Mears
,
S. C.
, 2011, “
Design of a New Cable-Driven Manipulator With a Large Open Lumen: Preliminary Applications in the Minimally-Invasive Removal of Osteolysis
,”
IEEE International Conference on Robotics and Automation
, Shanghai, China, May 9–13.
28.
Degani
,
A.
,
Choset
,
H.
,
Wolf
,
A.
, and
Zenati
,
M.
, 2006, “
Percutaneous Intrapericardial Interventions Using a Highly Articulated Robotic Probe
,” Biorob2006,
IEEE International Conference on Biorobotics and Biomechatronics
, Pisa, Italy, pp.
112
121
.
29.
Medrobotics, http://cardiorobotics.com/http://cardiorobotics.com/, last accessed December 2011.
30.
Erdemir
,
A.
, and
Fenske
,
G. R.
, 1998, “
Clean and Cost-Effective Dry Boundary Lubricants for Aluminum Forming
,” SAE Publ. No. SP-1350, pp. 9–17.
You do not currently have access to this content.