A new six-dof epicyclic-parallel manipulator with all actuators allocated on the ground is introduced. It is shown that the system has a considerably simple kinematics relationship, with the complete direct and inverse kinematics analysis provided. Further, the first and second links of each leg can be driven independently by two motors. The serial and parallel singularities of the system are determined, with an interesting feature of the system being that the parallel singularity is independent of the position of the end-effector. The workspace of the manipulator is also analyzed with future applications in haptics in mind.

References

References
1.
Merlet
,
J.
, 2006,
Parallel Robots
,
Springer
,
Dordrecht
.
2.
Kong
,
X.
, and
Gosselin
,
C.
, 2007,
Type Synthesis of Parallel Mechanisms
,
Springer-Verlag
,
Berlin
.
3.
Gogu
,
G.
, 2008,
Structural Synthesis of Parallel Robots, Part 1: Methodology
,
Springer
.
4.
Gogu
,
G.
, 2009,
Structural Synthesis of Parallel Robots, Part 2: Translational Topologies With Two and Three Degrees of Freedom
,
Springer
,
New York
.
5.
Clavel
,
R.
, 1988, “
Delta, a Fast Robot With Parallel Geometry
,” Proceedings of the lnternational Symposium on Industrial Robots, pp.
91
100
.
6.
Tsai
,
L.
,
Walsh
,
G.
, and
Stamper
,
R.
, 1996, “
Kinematics of a Novel Three DOF Translational Platform
,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pp.
3446
3451
.
7.
Gregorio
,
R. D.
, 2000, “
Closed-Form Solution of the Position Analysis of the Pure Translational 3-RUU Parallel Mechanism
,” Proceedings of the 8th Symposium on Mechanisms and Mechanical Transmissions, pp.
119
124
.
8.
Gosselin
,
C.
, 1993, “
On the Kinematic Design of Spherical 3-DOF Parallel Manipulators
,”
Int. J. Rob. Res.
,
12
(
4
), pp.
394
402
.
9.
Gregorio
,
R. D.
, 2001, “
Kinematics of a New Spherical Parallel Manipulator With Three Equal Legs: The 3-URC Wrist
,”
J. Rob. Syst.
,
18
(
5
), pp.
213
219
.
10.
Liu
,
X.
,
Wang
,
J.
, and
Pritschow
,
G.
, 2005, “
A New Family of Spatial 3-DOF Fully-Parallel Manipulators With High Rotational Capability
,”
Mech. Mach. Theory
,
40
(
4
), pp.
475
494
.
11.
Liu
,
X.
,
Wang
,
J.
,
Wu
,
C.
, and
Kim
,
J.
, 2009, “
A New Family of Spatial 3-DOF Parallel Manipulators With Two Translational and One Rotational DOFs
,”
Robotica
,
27
(
2
), pp.
241
247
.
12.
Morozov
,
A.
, and
Angeles
,
J.
, 2007, “
The Mechanical Design of a Novel Schönflies-Motion Generator
,”
Rob. Comput.-Integr. Manuf.
,
23
(
1
), pp.
82
93
.
13.
Huang
,
Z.
, and
Li
,
Q. C.
, 2002, “
General Methodology for Type Synthesis of Lower Mobility Symmetrical Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
146
.
14.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J.
, 2004, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
173
180
.
15.
Ben-Horin
,
P.
, and
Shoham
,
M.
, 2006, “
Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
577
590
.
16.
Dash
,
A. K.
,
Chen
,
I.-M.
,
Yeo
,
S. H.
, and
Yang
,
G.
, 2004, “
Instantaneous Kinematics and Singularity Analysis of Three-Legged Parallel Manipulators
,”
Robotica
,
22
(
2
), pp.
189
203
.
17.
Behi
,
F.
, 1988, “
Kinematic Analysis for a Six-Degree-of-Freedom 3-PRPS Parallel Mechanism
,”
IEEE J. Rob. Innov.
,
4
(
5
), pp.
561
565
.
18.
Kohli
,
D.
,
Lee
,
S.
,
Tsai
,
K.
, and
Sandor
,
G.
, 1988, “
Manipulator Configurations Based on Rotary-Linear (r-l) Actuators and Their Direct and Inverse Kinematics
,”
J. Mech., Transm., Autom. Des.
,
110
(
4
), pp.
397
404
.
19.
Cleary
,
K.
, and
Brooks
,
T.
, 1993, “
Kinematic Analysis of a Novel 6-DOF Parallel Manipulator
,” IEEE International Conference on Robotics and Automation, pp.
708
713
.
20.
Byun
,
Y.
, and
Cho
,
H. S.
, 1997, “
Analysis of a Novel 6-DOF, 3-PPSP Parallel Manipulator
,”
Int. J. Rob. Res.
,
16
(
6
), pp.
859
872
.
21.
Simaan
,
N.
,
Glozman
,
D.
, and
Shoham
,
M.
, 1998, “
Design Considerations of New Six Degrees-of-Freedom Parallel Robots
,” IEEE International Conference on Robotics and Automation, pp.
1327
1333
.
22.
Lee
,
S.-U.
, and
Kim
,
S.
, 2006, “
Analysis and Optimal Design of a New 6 DOF Parallel Type Haptic Device
,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
460
465
.
23.
Monsarrat
,
B.
, and
Gosselin
,
C.
, 2003, “
Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
954
966
.
24.
Parenti-Castelli
,
V.
, and
Innocenti
,
C.
, 1990, “
Direct Displacement Analysis for Some Classes of Spatial Parallel Mechanisms
,” Proceedings of the 8th CISM-IFTOMM Symposium on Theory and Practice of Robots and Manipulators, pp.
126
130
.
25.
Angeles
,
J.
, 2007,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
,
Springer
,
New York
.
26.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
27.
White
,
N. L.
, 1975, “
The Bracket Ring of a Combinatorial Geometry I
,”
Trans. Am. Math. Soc.
,
202
, pp.
79
95
.
28.
Kanaan
,
D.
,
Wenger
,
P.
,
Caro
,
S.
, and
Chablat
,
D.
, 2009, “
Singularity Analysis of Lower-Mobility Parallel Yanipulators Using Grassmann-Cayley Algebra
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
995
1004
.
29.
Caro
,
S.
,
Moroz
,
G.
,
Gayral
,
T.
,
Chablat
,
D.
, and
Chen
,
C.
, 2010, “
Singularity Analysis of a Six-DOF Parallel Manipulator Using Grassmann-Cayley Algebra and Gröbner Bases
,” Symposium on Brain, Body and Machine, Montreal, QC., Canada, Nov. 10–12.
30.
Amine
,
S.
,
Kanaan
,
D.
,
Caro
,
S.
, and
Wenger
,
P.
, 2010, “
Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators With Parallelogram Joints
,” Proceedings of the ASME 2010 International Design Engineering Technical Conferences, Montreal, Quebec, Canada, Aug. 15–18.
31.
White
,
N. L.
, 2005, “
Grassmann-Cayley Algebra and Robotics Applications
,” Handbook of Geometric Computing, Part VIII, pp.
629
656
.
32.
McMillan
,
T.
, and
White
,
N.
, 1991, “
The Dotted Straightening Algorithm
,”
J. Symb. Comput.
,
11
, pp.
471
482
.
33.
Amine
,
S.
,
Masouleh
,
M.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
, 2011, “
Singularity Analysis of the 4-RUU Parallel Manipulator Based on Grassmann-Cayley Algebra and Grassmann Geometry
,” Proceedings of the ASME 2011 International Design Engineering Technical Conferences, Washington, DC, Aug. 28–31.
34.
Khalil
,
W.
, and
Dombre
,
E.
, 2004,
Modeling, Identification and Control of Robots
,
Kogan Page Science
,
London
.
This content is only available via PDF.
You do not currently have access to this content.