This paper presents a procedure to synthesize planar rigid-body mechanisms, containing both prismatic and revolute joints, capable of approximating a shape change defined by a set of morphing curves in different positions. The existing mechanization process is extended specifically to enable the design of morphing aircraft wings. A portion of the closed-curve morphing chain that has minimal displacement is identified as the structural ground after the segmentation process. Because of the revolute joints placed at the endpoints of the ground section, the moving links of the fixed-end morphing chain need to be repositioned relative to each of the desired wing shapes so as to minimize the error in approximating them. With the introduction of prismatic joints, a building-block approach is employed to mechanize the fixed-end morphing chain. The blocks are located in an assembly position to generate a single degree-of-freedom (DOF) mechanism. Because of the additional constraints associated with prismatic joints compared to revolute joints, the size of the solution space is reduced, so random searches of the design space to find solution mechanisms are ineffective. A multi-objective genetic algorithm is employed instead to find a group of viable designs that tradeoff minimizing matching error with maximizing mechanical advantage. The procedure is demonstrated with a synthesis example of a 1-DOF mechanism approximating eight closed-curve wing profiles.

References

References
1.
Sofla
,
A. Y. N.
,
Meguid
,
S. A.
,
Tan
,
K. T.
, and
Yeo
,
W. K.
, 2010, “
Shape Morphing of Aircraft Wing: Status and Challenges
,”
Mater. Des.
,
31
(
3
), pp.
1284
1292
.
2.
Neal
,
D. A.
,
Good
,
M. G.
,
Johnston
,
C. O.
,
Robertshaw
,
H. H.
,
Mason
,
W. H.
, and
Inman
,
D. J.
, 2004, “
Design and Wind-Tunnel Analysis of a Fully Adaptive Aircraft Configuration
,”
Proceedings of AIAA/ASME/ASCE/AHS/ASC SDM
,
Palm Springs
,
California
.
3.
Joo
,
J. J.
,
Sanders
,
B.
,
Johnson
,
T.
, and
Frecker
,
M. I.
, 2006, “
Optimal Actuator Location Within a Morphing Wing Scissor Mechanism Configuration
,”
Smart Mater. Struct.
,
6166
, p.
616603
.
4.
Bharti
,
S.
,
Frecker
,
M.
,
Lesieutre
,
G.
, and
Browne
,
J.
, 2007, “
Tendon Actuated Cellular Mechanisms for Morphing Aircraft Wing
,”
Proceedings of SPIE
, San Diego, California.
5.
Inoyama
,
D.
,
Sanders
,
B. P.
, and
Joo
,
J. J.
, 2008, “
Topology Optimization Approach for the Determination of the Multiple-Configuration Morphing Wing Structure
,”
J. Aircr.
,
45
(
6
), pp.
1853
1862
.
6.
Vos
,
R.
,
Gurdal
,
Z.
, and
Abdalla
,
M.
, 2010, “
Mechanism for Warp-Controlled Twist of a Morphing Wing
,”
J. Aircr.
,
47
(
2
), pp.
450
457
.
7.
Kota
,
S.
,
Hetrick
,
J.
, and
Osborn
,
R.
, 2003, “
Design and Application of Compliant Mechanisms for Morphing Aircraft Structures
,”
Proc. SPIE
,
5054
, pp.
24
33
.
8.
Mieloszyk
,
M.
,
Krawczuk
,
M.
,
Zak
,
A.
, and
Ostachowicz
,
W.
, 2010, “
An Adaptive Wing for a Small-Aircraft Application With a Configuration of Fibre Bragg Grating Sensors
,”
Smart Mater. Struct.
,
19
(
8
), pp.
1
12
.
9.
Wiggins
,
L. D.
,
Stubbs
,
M. D.
,
Johnston
,
C. O.
,
Robertshaw
,
H. H.
,
Reinholtz
,
C. F.
, and
Inman
,
D. J.
, 2004, “
A Design and Analysis of a Morphing Hyper-Elliptic Cambered Span (HECS) Wing
,”
Proceedings of AIAA/ASME/ASCE/AHS/ASC SDM
, Palm Springs, California.
10.
Frank
,
G. J.
,
Joo
,
J. J.
,
Sanders
,
B.
,
Garner
,
D. M.
, and
Murray
,
A. P.
, 2008, “
Mechanization of a High Aspect Ratio Wing for Aerodynamic Control
,”
J. Intell. Mater. Syst. Struct.
,
19
(
9
), pp.
1101
1112
.
11.
Peel
,
L. D.
,
Mejia
,
J.
,
Narvaez
,
B.
,
Thompson
,
K.
, and
Lingala
,
M.
, 2009, “
Development of a Simple Morphing Wing Using Elastomeric Composite as Skins and Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091003
.
12.
Georges
,
T.
,
Brailovski
,
V.
,
Morellon
,
E.
,
Coutu
,
D.
, and
Terriault
,
P.
, 2009, “
Design of Shape Memory Alloy Actuators for Morphing Laminar Wing With Flexible Extrados
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091006
.
13.
Maute
,
K.
, and
Reich
,
G. W.
, 2006, “
Integrated Multidisciplinary Topology Optimization Approach to Adaptive Wing Design
,”
J. Aircr.
,
43
(
1
), pp.
253
263
.
14.
Monner
,
H. P.
, 2001, “
Realization of an Optimized Wing Camber by Using Form Variable Flap Structures
,”
Aerosp. Sci. Technol.
,
5
(
7
), pp.
445
455
.
15.
Calkins
,
F. T.
, and
Mabe
,
J. H.
, 2010, “
Shape Memory Alloy Based Morphing Aerostructures
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111012
.
16.
Ramrakhyani
,
D. S.
,
Lesieutre
,
G. A.
,
Frecker
,
M.
, and
Bharti
,
S.
, 2005, “
Aircraft Structural Morphing Using Tendon-Actuated Compliant Cellular Trusses
,”
J. Aircr.
,
42
(
6
), pp.
1615
1621
.
17.
Trease
,
B.
, and
Kota
,
S.
, 2009, “
Design of Adaptive and Controllable Compliant Systems With Embedded Actuators and Sensors
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111001
.
18.
Smith
,
S. B.
, and
Nelson
,
D. W.
, 1990, “
Determination of the Aerodynamic Characteristics of the Mission Adaptive Wing
,”
J. Aircr.
,
27
(
11
), pp.
950
958
.
19.
Murray
,
A. P.
,
Schmiedeler
,
J. P.
, and
Korte
,
B. M.
, 2008, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms
,”
ASME J. Mech. Des.
,
130
(
3
), p.
032302
.
20.
Persinger
,
J. A.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
, 2009, “
Synthesis of Planar Rigid-Body Mechanisms Approximating Shape Changes Defined by Closed Curves
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071006
.
21.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
, 2011, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms With Prismatic Joints
,”
Proceedings of ASME IDETC/CIE
, Washington, DC.
22.
Kinzel
,
G. L.
, and
Chang
,
C.
, 1984, “
The Analysis of Planar Linkages Using a Modular Approach
,”
Mech. Mach. Theory
,
19
(
1
), pp.
165
172
.
23.
Myszka
,
D. H.
,
Murray
,
A. P.
, and
Schmiedeler
,
J. P.
, 2009, “
Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N-1
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011009
.
24.
Neville
,
A. B.
, and
Sanderson
,
A. C.
, 1996, “
Tetrobot Family Tree: Modular Synthesis of Kinematic Structures for Parallel Robotics
,” Proceedings of IEEE/RSJ IROS, Osaka, Japan.
25.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
, 2011, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
.
26.
Holland
,
J. H.
, 1975, “
Adaptation in Natural and Artificial Systems
,” Internal Report, University of Michigan, Ann Arbor, MI.
27.
Andre
,
J.
,
Siarry
,
P.
, and
Dognon
,
T.
, 2001, “
An Improvement of the Standard Genetic Algorithm Fighting Premature Convergence in Continuous Optimization
,”
Adv. Eng. Software
,
32
(
1
), pp.
49
60
.
You do not currently have access to this content.