Singularity analysis is one of the most important issues in the field of parallel manipulators. An approach for singularity analysis should be able to not only identify all possible singularities but also explain their physical meanings. Since a parallel manipulator is always out of control at a singularity and its neighborhood, it should work far from singular configurations. However, how to measure the closeness between a pose and a singular configuration is still a challenging problem. This paper presents a new approach for singularity analysis of parallel manipulators by taking into account motion/force transmissibility. Several performance indices are introduced to measure the closeness to singularities. By using these indices, a uniform “metric” can be found to represent the closeness to singularities for different types of nonredundant parallel manipulators.

References

1.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
2.
Liu
,
G.
,
Lou
,
Y.
, and
Li
,
Z.
, 2003, “
Singularities of Parallel Robots: A Geometric Treatment
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
579
594
.
3.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
, 2006, “
Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
145
169
.
4.
Saglia
,
J.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
, 2008, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularity and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.
5.
Amine
,
S.
,
Kanaan
,
D.
,
Caro
,
S.
, and
Wenger
,
P.
, 2010, “
Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators With Parallelogram Joints
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, Quebec, Canada, Aug. 15–18, pp.
1317
1326
.
6.
Selvakumar
,
A. A.
,
Karthik
,
K.
,
Naresh Kumar
,
A. L.
,
Sivaramakrishnan
,
R.
, and
Kalaichelvan
,
K.
, 2011, “
Kinematic and Singularity Analysis of 3 PRR Parallel Manipulator
,”
Adv. Mater. Res.
,
403–408
, pp.
5015
5021
.
7.
Zarkandi
,
S.
,
Vafadar
,
A.
, and
Esmaili
,
M. R.
, 2011, “
PRRRRRP Redundant Planar Parallel Manipulator: Kinematics, Workspace and Singularity Analysis
,”
IEEE Conference on Robotics, Automation and Mechatronics (RAM)
, Qingdao, China, Sept. 17–19, pp.
61
66
.
8.
Kong
,
X.
, 2011, “
Forward Displacement Analysis and Singularity Analysis of a Special 2-DOF 5R Spherical Parallel Manipulator
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
024501
.
9.
Cao
,
Y.
,
Ji
,
W.
,
Zhou
,
H.
, and
Zhang
,
Q.
, 2011, “
Position-Singularity Analysis of 6–3 Stewart-Gough Parallel Manipulators for Special Orientations
,”
Int. J. Rob. Autom.
,
26
(
3
), pp.
152
158
.
10.
Masouleh
,
M. T.
, and
Gosselin
,
C.
, 2011, “
Singularity Analysis of 5-RPUR Parallel Mechanisms (3T2R)
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
1107
1121
.
11.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
G.
, 2012, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011011
.
12.
Ma
,
O.
, and
Angeles
,
J.
, 1991, “
Architecture Singularities of Platform Robots
,”
IEEE International conference on Robotics and Automation (ICRA’91)
, Sacramento, CA, pp.
1542
1547
.
13.
Park
,
F. C.
, and
Kim
,
J. W.
, 1999, “
Singularity Analysis of Closed Kinematic Chains
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
32
38
.
14.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’02)
, Washington, DC, pp.
496
502
.
15.
Joshi
,
S. A.
, and
Tsai
,
L. W.
, 2002, “
Jacobian Analysis of Limited-DOF Parallel Robots
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
16.
Gogu
,
G.
, 2008, “
Constraint Singularities and the Structural Parameters of Parallel Robots
,” Adv. Rob. Kinemat.: Anal. Des., pp. 21–28.
17.
Merlet
,
J. P.
, 1989, “
Singular Configurations of Parallel Robots and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.
18.
Ben-Horin
,
P.
, and
Shoham
,
M.
, 2006, “
Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
577
590
.
19.
Ben-Horin
,
P.
, and
Shoham
,
M.
, 2006, “
Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra
,”
Mech. Mach. Theory
,
41
(
8
), pp.
958
970
.
20.
Ben-Horin
,
P.
, and
Shoham
,
M.
, 2009, “
Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities
,”
Int. J. Robot. Res.
,
28
(
1
), pp.
127
141
.
21.
Kanaan
,
D.
,
Wrenger
,
P.
,
Caro
,
S.
, and
Chablat
,
D.
, 2009, “
Singularity Analysis of Lower Mobility Parallel Robots Using Grassmann-Cayley Algebra
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
995
1004
.
22.
Zhao
,
J.
,
Li
,
B.
,
Yang
,
X.
, and
Yu
,
H.
, 2009, “
Geometrical Method to Determine the Reciprocal Screws and Applications to Parallel Robots
,”
Robotica
,
27
(
6
), pp.
929
940
.
23.
Merlet
,
J. P.
, and
Gosselin
,
C. M.
, 2008,
Handbook of Robotics, Chapter Parallel Mechanisms and Robots
,
Springer
,
Heidelberg
, pp.
269
285
.
24.
Liu
,
X.-J.
, 2006, “
Optimal Kinematic Design of a Three Translational DOFs Parallel Robot
,”
Robotica
,
24
(
2
), pp.
239
250
.
25.
Lou
,
Y. J.
,
Liu
,
G. F.
,
Chen
,
N.
, and
Li.
,
Z. X.
, 2005, “
Optimal Design of Parallel Robots for Maximum Effective Regular Workspace
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, Canada, pp.
1208
1213
.
26.
Merlet
,
J. P.
, 2006, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
, pp.
199
206
.
27.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
, 2004, “
Measuring ‘Closeness’ to Singularities for Parallel Robots
,”
IEEE International Conference on Robotics and Automation (ICRA’04)
, New Orleans, pp.
4539
4544
.
28.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
, 2005, “
Overarching Framework for Measuring Closeness to Singularities of Parallel Robots
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1037
1045
.
29.
Hubert
,
J.
, and
Merlet
,
J.-P.
, 2009, “
Static of Parallel Robots and Closeness to Singularity
,”
ASME J. Mech. Rob.
,
1
, p.
011011
.
30.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
, 2010, “
Performance Evaluation of Parallel Robots: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
31.
Weisstein
,
E. W.
, “
Scalar Triple Product
,” From MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/ScalarTripleProduct.htmlhttp://mathworld.wolfram.com/ScalarTripleProduct.html
32.
Chen
,
C.
, and
Angeles
,
J.
, 2007, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
33.
Huang
,
Z.
,
Zhao
,
Y.
, and
Zhao
,
T.
, 2006,
Advanced Spatial Mechanism
,
China Higher Education Press
,
Beijing
(in Chinese).
34.
Liu
,
X.-J.
,
Wang
,
L.-P.
,
Xie
,
F.
, and
Bonev
,
I. A.
, 2010, “
Design of a Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,”
ASME J. Manuf. Sci. Eng.
,
132
, p.
021009
.
35.
Bonev
,
I. A.
, 2002, “
Geometric Analysis of Parallel Mechanisms
,” PhD thesis, Université Laval, Québec, Canada.
36.
Fitcher
,
E. F.
, 1986, “
A Stewart Platform-Based Robot: General Theory and Practical Construction
,”
Int. J. Robot. Res.
,
5
, pp.
157
182
.
You do not currently have access to this content.