Realizing an ideal impedance control system in lower extremity rehabilitation systems is challenged by mechanical impedance of robot hardware. Although many researchers in Robotics and Control Systems have studied to reduce the mechanical impedance of actuators, they have not been able to eliminate the inertia of robot hardware. This paper introduces an alternative design using mechanical links. The mechanical links are driven by one actuator without any complicated servo systems. The design parameters were optimized by simulation studies for the link system to generate the normal walking motion. The device is connected to a human using elastic components, and therefore, the inertia of the link system is not directly imposed on the user. The human legs are guided to follow the motion of the link system by an assistive force generated by the elastic components.

References

References
1.
Hocoma
, 2012, “
Lokomat
,” http://www.hocoma.chhttp://www.hocoma.ch
2.
Krebs
,
H.
, and
Hogan
,
N.
, 1998, “
Robot-Aided Neurorehabilitation
,”
IEEE Trans. Rehabil. Eng.
,
6
(
1
), pp.
75
87
.
3.
Sugar
,
T.
, and
He
,
J.
, 2007, “
Design and Control of Rupert: A Device for Robotic Upper Extremity Repetitive Therapy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
336
346
.
4.
Veneman
,
J.
,
Kruidhof
,
R.
,
Hekman
,
E.
,
Ekkelenkamp
,
R.
,
van Asseldonk
,
E.
, and van der
Kooij
,
H.
, 2007, “
Design and Evaluation of the Lopes Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.
5.
Riener
,
R.
,
Lunenburger
,
L.
,
Jezernik
,
S.
,
Anderschitz
,
M.
,
Colombo
,
G.
, and
Dietz
,
V.
, 2005, “
Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results
,”
IEEE Trans. Neural Syst. Rehabil. Eng
,
13
(
3
), pp.
380
394
.
6.
Kawamoto
,
H.
, and
Sankai
,
Y.
, 2002, “
Power Assist System HAL-3 for Gait Disorder Person
,”
Proceedings of the International Conference on Computers and Handicapped Persons
, pp.
196
203
.
7.
Blaya
,
J.
, and
Herr
,
H.
, 2004, “
Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.
8.
Beyl
,
P.
,
Damme
,
M. V.
,
Ham
,
R. V.
,
Versluys
,
R.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
, 2008, “
An Exoskeleton for Gait Rehabilitation: Prototype Design and Control Principle
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2037
2042
.
9.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
, 2012, “
Control of Rotary Series Elastic Actuator for Ideal Force Mode Actuation in Human-Robot Interaction Applications
,”
IEEE Trans. Mechatron
,
17
(
2
), pp.
288
297
.
10.
Buerger
,
S. P.
, and
Hogan
,
N.
, 2007, “
Complementary Stability and Loop Shaping for Improved Human-Robot Interaction
,”
IEEE Trans. Rob.
,
23
(
2
), pp.
232
244
.
11.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
, 2002, “
Series Elastic Actuators for High Fidelity Force Control
,”
Int. J. Ind. Robot
,
29
(
3
), pp.
234
241
.
12.
Agrawal
,
S. K.
,
Gardener
,
G.
, and
Pledgie
,
S.
, 2001, “
Design and Fabrication of a Gravity Balanced Planar Mechanism Using Auxiliary Parallelograms
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
525
528
.
13.
Agrawal
,
S. K.
, and
Fattah
,
A.
, 2004. “
Theory and Design of an Orthotic Device for Full or Partial Gravity-Balancing of a Human Leg During Motion
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
2
), pp.
157
165
.
14.
Perry
,
J.
, 1992,
Gait Analysis
,
SLACK, Inc.
,
Thorofare, NJ
.
15.
Ambekar
,
A.
, 2007,
Mechanism and Machine Theory
,
PHI Learning Pvt. Ltd.
,
New Delhi, India.
You do not currently have access to this content.