A novel 8U (universal joint) parallel mechanism, being able to do omnidirectional rolling motion is proposed in this paper. This mobile mechanism owns the priority of simple structure and rolling easily on terrains with loose soil, dirt or sand with only a few actuations. Its spatial closed compact structure is described firstly. In addition, the omnidirectional locomotion accompanied with DOF (degree of freedom) alternation between one and two is revealed by mobility analysis. After that, the feasibility of rolling motion is verified theoretically by stability analysis. Finally, the omnidirectinoal rolling motion is testified both by virtual and prototype experiments.

References

References
1.
Buehler
,
M.
,
Battaglia
,
R.
,
Cocosco
,
A.
,
Hawker
,
G.
,
Sarkis
,
J.
,
Yamazaki
,
K.
, 1998, “
SCOUT: A Simple Quadruped That Walks, Climbs, and Runs
,”
Proceedings of IEEE ICRA
,
Leuven
,
Belgium
, pp.
1701
1712
.
2.
Poulakakis
,
I.
,
Smith
,
J. A.
, and
Buehler
,
M.
, 2004, “
Experimentally Validated Bounding Models for the Scout II Quadrupedal Robot
,”
Proceedings of IEEE ICRA
,
New Orleans
,
Louisiana
, pp.
2595
2600
.
3.
Smith
,
J. A.
, and
Poulakakis
,
I.
, 2004, “
Rotary Gallop in the Untethered Quadrupedal Robot Scout II
,”
Proceedings of IEEE/RSJ International Conference on IROS
,
Sendai
,
Japan
, pp.
2556
2561
.
4.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
,
Playter
,
R.
, and
Team
,
T. B.
, 2008, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
International Conference on Automatic Control World Congress.
5.
Wooden
D.
,
Malchano
M.
,
Blankespoor
K.
,
Howardy
,
A.
,
Rizzi
,
A. A.
, and
Raibert
,
M.
, 2010, “
Autonomous Navigation for BigDog
,”
Proceedings of IEEE ICRA
,
Anchorage Convention District
,
Alaska
, pp.
4736
4741
.
6.
Raibert
,
M. H.
, 1986,
Legged Robots That Balance
,
MIT Press
,
Cambridge, Mass
.
7.
Hirose
,
S.
, 1993,
Biologically Inspired Robots: Snake-Like Locomotors and Manipulators
,
Oxford University Press
,
New York
.
8.
Yim
,
M.
,
Homans
,
S.
, and
Roufas
,
K.
, 2001, “
Climbing With Snake-Like Robots
,”
Proceedings of IFAC. Workshop on Mobile Robot Technology
,
Jejudo
,
Korea
, May
21
22
.
9.
Ma
,
S.
,
Araya
,
H.
, and
Li
,
L.
, 2001, “
Development of a Creeping Snake- Robot
,”
Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation
,
Banff
,
Alberta, CA
, July 29–Aug. 1, pp.
77
82
.
10.
Armour
,
R. H.
, and
Vincent
,
J. F. V.
, 2006, “
Rolling in Nature and Robotics: A Review
,”
J. Bionic Eng.
,
3
(
4
), pp.
195
208
.
11.
Javadi
A. A. H.
, and
Mojabi
,
P.
, 2002, “
Introducing August: A Novel Strategy for an Omnidirectional Spherical Rolling Robot
,”
Proceedings of IEEE ICRA
,
Washington, DC
, pp.
3527
3533
.
12.
Estier
,
T.
,
Crausaz
,
Y.
,
Merminod
,
B.
,
Lauria
,
M.
,
Piguet
,
R.
, and
Siegwart
,
R.
, 2000, “
An Innovative Space Rover With Extended Climbing Abilities
,”
Proceedings of Space and Robotics
,
Albuquerque
,
New Mexico
, Feb. 27–Mar. 2.
13.
Yamauchi
,
B. M.
, 2004, “
Packbot: A Versatile Platform for Military Robotics
,”
Proc. SPIE
,
5422
, pp.
228
237
.
14.
Kim
,
J.
,
Lee
,
C.
, and
Kim
,
G.
, 2010, “
Study of Machine Design for a Transformable Shape Single-Tracked Vehicle System
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1082
1095
.
15.
Sastra
,
J.
,
Chitta
,
S.
, and
Yim
,
M.
, 2009, “
Dynamic Rolling for a Modular Loop Robot
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
758
773
.
16.
Lee
,
W. H.
, and
Sanderson
,
A. C.
, 2000, “
Dynamic Rolling, Locomotion Planning, and Control of an Icosahedral Modular Robot
,”
Proceedings of IEEE/RSJ International Conference IROS
, pp.
2178
2183
.
17.
Shibata
,
M.
, and
Hirai
,
S.
, 2009, “
Rolling Locomotion of Deformable Tensegrity Structure
,”
Mobile Robotics: Solutions and Challenges (CLAWAR09)
, pp.
479
486
.
18.
Clark
,
P. E.
,
Rilee
,
M. L.
,
Curtis
,
S. A.
,
Truszkowski
,
W.
,
Marr
,
G.
,
Cheung
,
C.
, and
Rudisill
,
M.
, 2004, “
BEES for ANTS: Space Mission Applications for the Autonomous Nano-technology Swarm
,”
Proceedings of First AIAA Intelligent Systems Technical Conference
, Session 29-IS-13.
19.
Abrahantes
,
M.
,
Silver
,
A.
, and
Wendt
,
L.
, 2007, “
Gait Design and Modeling of a 12-Tetrahedron Walker Robot
,”
39th Southeastern Symposium on System Theory
,
Macon
,
Georgia
, Mar. 4–6, pp.
21
25
.
20.
Sugahara
,
Y.
,
Hosobata
,
T.
,
Mikuriya
,
Y.
,
Sunazuka
,
H.
,
Hun-ok
Lim
,
Takanishi
,
A.
, 2004, “
Realization of Dynamic Human-Carrying Walking by a Biped Locomotor
,”
Proceedings of IEEE ICRA
,
New Orleans
,
Louisiana
, pp.
3055
3060
.
21.
Reg Dunlop
,
G.
, 2003, “
Foot Design for a Large Walking Delta Robot
,”
Exp. Rob. VIII
,
5
, pp.
602
611
.
22.
Nagakubo
,
A.
, and
Hirose
,
S.
, 1994, “
Walking and Running of the Quadruped Wall-Climbing Robot
,”
Proceedings of IEEE ICRA
,
San Diego
,
California
, May 8–13, Vol.
2
, pp.
1005
1012
.
23.
Li
,
Q. C.
, and
Huang
,
Z.
, 2003, “
Mobility Analysis of a 3–5R Parallel Mechanism Family
,”
IEEE ICRA
,
Taipei
,
Taiwan
, Sept. 14–19, pp.
1887
1890
.
24.
Huang
,
Z.
,
Zhao
,
Y. S.
, and
Zhao
,
T. S.
, 2006,
Advanced Spatial Mechanism
,
Higher Education Press
,
Beijing
(in Chinese).
25.
Vukobratovic
,
M.
,
Frank
,
A. A.
, and
Juricic
,
D.
, 1970, “
On the Stability of Biped Locomotion
,”
IEEE Trans. Biomed. Eng.
,
17
(
1
), pp.
25
36
.
26.
Takanishi
,
A.
,
Tochizawa
,
M.
,
Takeya
,
T.
,
Karaki
,
H.
, and
Kato
,
I.
, 1989, “
Realization of Dynamic Biped Walking Stabilized With Trunk Motion Under Known External Force
,”
Proceedings of International Conference on Advanced Robotics
,
Columbus
,
Ohio
.
You do not currently have access to this content.