The wrench-closure workspace (WCW) of parallel cable-driven mechanisms is the set of poses for which any wrench can be produced at the end-effector by a set of positive cable tensions. In this paper, we tackle the dimensional synthesis problem, namely, that of finding a geometry for a planar parallel cable-driven mechanism (PPCDM) whose WCW contains a prescribed workspace. To this end, we first recall a linear program to determine whether a given pose is inside or outside the WCW of a given PPCDM. The relaxation of this linear program over a box leads to a nonlinear feasibility problem that can only be satisfied when this box is completely inside the WCW. We extend this feasibility problem to find a PPCDM geometry whose WCW includes a given set of boxes. These boxes represent the prescribed workspace or an estimate thereof, which may be obtained through interval analysis. Finally, we introduce a nonlinear program through which the PPCDM geometry is changed while maximizing the scaling factor of the prescribed set of boxes. When the optimum scaling factor is greater or equal to one, the WCW of the resulting PPCDM contains the set of boxes.

References

References
1.
Riechel
,
A. T.
,
Bosscher
,
P.
,
Lipkin
,
H.
, and
Ebert-Uphoff
,
I.
, 2004, “
Concept Paper: Cable-Driven Robots for Use in Hazardous Environments
,”
10th International Topical Meeting on Robotics and Remote Systems for Hazardous Environments
,
Gainesville
,
FL, USA
.
2.
Bosscher
,
P.
,
Williams
,
R. L.
, and
Tummino
,
M.
, 2005, “
A Concept for Rapidly Deployable Cable Robot Search and Rescue Systems
,”
ASME IDETC/CIE
,
Long Beach
,
CA, USA
.
4.
Borgstrom
,
P. H.
,
Borgstrom
,
N. P.
,
Stealey
,
M. J.
,
Jordan
,
B.
, and
Sukhatme
,
G. S.
, 2009, “
Design and Implementation of NIMS3D, a 3-D Cabled Robot for Actuated Sensing Applications
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
325
339
.
5.
Borgstrom
,
P. H.
,
Jordan
,
B. J.
,
Stealey
,
M. J.
,
Sukhatme
,
G. S.
,
Kaiser
,
W. J.
, and
Batalin
,
M. A.
, 2009, “
Nims-pl: A Cable-Driven Robot With Self-Calibration Capabilities
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1005
1015
.
6.
Gosselin
,
C.
,
Poulin
,
R.
, and
Laurendeau
,
D.
, 2008, “
A Planar Parallel 3-dof Cable-Driven Haptic Interface
,”
12th World Multi-Conference on Systemics
,
Cybernetics and Informatics
,
Orlando, FL, USA
, pp.
266
271
.
7.
Williams
,
R. L.
, II
, 1998, “
Cable-Suspended Haptic Interface
,”
Int. J. Virtual Reality
,
3
(
3
), pp.
13
20
.
8.
Kurtz
,
R.
, and
Hayward
,
V.
, 1991, “
Dexterity Measure for Tendon Actuated Parallel Mechanisms
,”
IEEE International Conference on Advanced Robotics
,
Pisay
,
Italy
, pp.
1141
1146
.
9.
Ming
,
A.
, and
Higuchi
,
T.
, 1994, “
Study on Multiple Degree-of-Freedom Positioning Mechanism Using Wires (Part 1) Concept, Design and Control
,”
Int. J. Jpn. Soc. Precis. Eng.
,
28
(
2
), pp.
131
138
.
10.
Gosselin
,
C.
,
Lefrançois
,
S.
, and
Zoso
,
N.
, 2010, “
Underactuated Cable-Driven Robots: Machine, Control and Suspended Bodies
,”
Brain, Body and Machine
, Vol.
83
,
J.
Angeles
,
B.
Boulet
,
J. J.
Clark
,
J.
Kövecses
, and
K.
Siddiqi
, eds.,
Springer
,
Berlin
, pp.
311
323
.
11.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I.-M.
, 2006, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
, pp.
53
69
.
12.
Stump
,
E.
, and
Kumar
,
V.
, 2006, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
.
13.
Fattah
,
A.
, and
Agrawal
,
S.
, 2005, “
On the Design of Cable-Suspended Planar Parallel Robots
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1021
1028
.
14.
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
, 2004, “
Force-Feasible Workspace Analysis for Underconstrained, Point-Mass Cable Robots
,”
IEEE International Conference on Robotics & Automation
,
New Orleans
,
LA, USA
, pp.
4956
4962
.
15.
McColl
,
D.
, and
Notash
,
L.
, 2009, “
Extension of Antipodal Theorem to Workspace Analysis of Planar Wire-Actuated Manipulators
,”
Proceedings of the 5th IFToMM International Workshop
, pp.
9
16
.
16.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J. P.
, 2011, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
17.
Hay
,
A. M.
, and
Snyman
,
J. A.
, 2005, “
Optimization of a Planar Tendon-Driven Parallel Manipulator for a Maximal Dextrous Workspace
,”
Eng. Optimiz.
,
37
(
3
), pp.
217
236
.
18.
Kolev
,
K.
, and
Cremers
,
D.
, 2009, “
Continuous Ratio Optimization via Convex Relaxation With Applications to Multiview 3D Reconstruction
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Miami
,
FL, USA
, pp.
1858
1864
.
19.
Cafieri
,
S.
,
Lee
,
J.
, and
Liberti
,
L.
, 2010, “
On Convex Relaxations of Quadrilinear Terms
,”
J. Global Optim.
,
47
(
4
), pp.
661
685
.
20.
Porta
,
J.
,
Rose
,
L.
, and
Thomas
,
F.
, 2009, “
A Linear Relaxation Technique for the Position Analysis of Multiloop Linkages
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
225
239
.
21.
Graham
,
T.
,
Roberts
,
R.
, and
Lippitt
,
T.
, 1998, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Rob. Syst.
,
15
(
10
), pp.
581
597
.
22.
Dantzig
,
G.
, and
Thapa
,
M.
, 2003,
Linear Programming: Theory and Extensions
,
Springer
,
New York
.
23.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
, 2009,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia, PA, USA
.
24.
Sherali
,
H.
, and
Tuncbilek
,
C. H.
, 1995, “
A Reformulation-Convexification Approach for Solving Nonconvex Quadratic Programming Problems
,”
J. Global Optim.
,
7
, pp.
1
31
.
25.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
26.
Bazarra
,
M.
,
Sherali
,
H.
, and
Shetty
,
C.
, 2006,
Nonlinear Programming
,
Wiley Interscience
,
Hoboken, NJ, USA
.
27.
McCormick
,
G. P.
, 1976, “
Computability of Global Solutions to Factorable Nonconvex Programs: Part I: Convex Underestimating Problems
,”
Math. Program.
,
10
, pp.
147
175
.
28.
Meyer
,
C. A.
, and
Floudas
,
C. A.
, 2004, “
Trilinear Monomials With Mixed Sign Domains: Facets of the Convex and Concave Envelopes
,”
J. Global Optim.
,
29
, pp.
125
155
.
You do not currently have access to this content.