This paper presents design principles for compliant mechanisms used to support and load spines used in climbing rough vertical surfaces. The design principles ensure that constraints associated with spine/surface interactions are satisfied and that when multiple spines are placed in contact with a surface they share the load without premature failures or spine overloading. The design principles are demonstrated with a compliant mechanism that has been used for robotic and human climbing on surfaces such as brick, stucco and concrete.

References

References
1.
Dai
,
Z.
,
Gorb
,
S.
, and
Schwarz
,
U.
, 2002, “
Roughness-Dependent Friction Force of the Tarsal Claw System in the Beetle Pachnoda Marginata (Coleoptera, Scarabaeidae)
,”
J. Exp. Biol.
,
205
(
16
), pp.
2479
2488
.
2.
Nachtigall
,
W.
, 1974,
Biological Mechanisms of Attachment
,
Springer
,
Berlin
.
3.
Gorb
,
S.
,
Beutel
,
R.
,
Gorb
,
E.
,
Jiao
,
Y.
,
Kastner
,
V.
,
Niederegger
,
S.
,
Popov
,
V.
,
Scherge
,
M.
,
Schwarz
,
U.
, and
Votsch
,
W.
, 2002, “
Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects
,”
Integr. Comp. Biol.
,
42
(
6
), pp.
1127
1139
.
4.
Macior
,
L.
, 1965, “
Insect Adaptation and Behavior in Asclepias Pollination
,”
Bull. Torrey Bot. Club
,
92
(
2
), pp.
114
126
.
5.
Roth
,
L.
, and
Willis
,
E.
, 1952, “
Tarsal Structure and Climbing Ability of Cockroaches
,”
J. Exp. Zool.
,
119
, pp.
483
517
.
6.
Bullock
,
J. M. R.
, and
Federle
,
W.
, 2011, “
The Effect of Surface Roughness on Claw and Adhesive Hair Performance in the Dock Beetle Gastrophysa Viridula
,”
Insect Sci.
,
18
(
3
), pp.
298
304
.
7.
Asbeck
,
A. T.
,
Kim
,
S.
,
Cutkosky
,
M. R.
,
Provancher
,
W. R.
, and
Lanzetta
,
M.
, 2006, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Int. J. Robot. Res.
,
25
(
12
), pp.
1165
1179
.
8.
Spenko
,
M.
,
Haynes
,
G.
,
Saunders
,
J.
,
Cutkosky
,
M.
,
Rizzi
,
A.
,
Full
,
R.
, and
Koditschek
,
D.
, 2008, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Rob.
,
25
(
4
), pp.
223
242
.
9.
Lussier Desbiens
,
A.
,
Asbeck
,
A.
, and
Cutkosky
,
M.
, 2011, “
Landing, Perching and Taking off From Vertical Surfaces
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
355
370
.
10.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Horchler
,
A. D.
,
Southard
,
L.
,
Wile
,
G. D.
,
Quinn
,
R. D.
,
Gorb
,
S. N.
, and
Ritzmann
,
R. E.
, 2009, “
Mini-Whegs TM Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms
,”
Int. J. Rob. Res.
,
28
(
2
), pp.
285
302
.
11.
Spagna
,
J.
,
Goldman
,
D.
,
Lin
,
P.
,
Koditschek
,
D.
, and
Full
,
R.
, 2007, “
Distributed Mechanical Feedback in Arthropods and Robots Simplifies Control of Rapid Running on Challenging Terrain
,”
Bioinspiration Biomimetics
,
2
(
1
), pp.
9
18
.
12.
Wile
,
G.
,
Daltorio
,
K.
,
Diller
,
E.
,
Palmer
,
L.
,
Gorb
,
S.
,
Ritzmann
,
R.
, and
Quinn
,
R.
, 2008, “
Screenbot: Walking Inverted Using Distributed Inward Gripping
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
1513
1518
13.
Sitti
,
M.
, and
Fearing
,
R.
, 2003, “
Synthetic Gecko Foot-Hair Micro/Nano-Structures as Dry Adhesives
,”
J. Adhes. Sci. Technol.
,
17
(
8
), pp.
1055
1073
.
14.
Yao
,
H.
, and
Gao
,
H.
, 2006, “
Mechanics of Robust and Releasable Adhesion in Biology: Bottom-up Designed Hierarchical Structures of Gecko
,”
J. Mech. Phys. Solids
,
54
(
6
), pp.
1120
1146
.
15.
Kim
,
T.
, and
Bhushan
,
B.
, 2007, “
Adhesion Analysis of Multi-Level Hierarchical Attachment System Contacting With a Rough Surface
,”
J. Adhes. Sci. Technol.
,
21
(
1
), pp.
1
20
.
16.
Kim
,
T.
, and
Bhushan
,
B.
, 2007, “
Effect of Stiffness of Multi-Level Hierarchical Attachment System on Adhesion Enhancement
,”
Ultramicroscopy
,
107
(
10-11
), pp.
902
912
.
17.
Bhushan
,
B.
, 2007, “
Adhesion of Multi-level Hierarchical Attachment Systems in Gecko Feet
,”
J. Adhes. Science Technol.
,
21
(
12
), pp.
1213
1258
.
18.
Santos
,
D.
,
Spenko
,
M.
,
Parness
,
A.
,
Kim
,
S.
, and
Cutkosky
,
M.
, 2007, “
Directional Adhesion for Climbing: Theoretical and Practical Considerations
,”
J. Adhes. Sci. Technol.
,
21
(
12-13
), pp.
1317
1341
.
19.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley-Interscience
.
20.
Kövecses
,
J.
, and
Angeles
,
J.
, 2007, “
The stiffness matrix in elastically articulated rigid-body systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
169
184
.
21.
Loncaric
,
J.
, 1987, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
567
572
.
22.
Chen
,
S.-F.
, and
Kao
,
I.
, 2000, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Rob. Res.
,
19
(
9
), pp.
835
847
.
23.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
, 2011, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
J. Mech. Rob
,
3
(
1
), p.
011001
.
24.
Cham
,
J. G.
,
Bailey
,
S. A.
,
Clark
,
J. E.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
, 2002, “
Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing
,”
Int. J. Rob. Res.
,
21
(
10
), pp.
869
882
.
25.
Parness
,
A.
,
Soto
,
D.
,
Esparza
,
N.
,
Gravish
,
N.
,
Wilkinson
,
M.
,
Autumn
,
K.
, and
Cutkosky
,
M.
, 2009, “
A Microfabricated Wedge-Shaped Adhesive Array Displaying Gecko-Like Dynamic Adhesion, Directionality and Long Lifetime
,”
J. R. Soc., Interface
,
6
(
41
), pp.
1223
1232
.
26.
Parness
,
A.
, 2011, “
Anchoring Foot Mechanisms for Sampling and Mobility in Microgravity
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, pp.
6596
6599
.
You do not currently have access to this content.