This paper deals with the optimal design of a 4-DOF SCARA type (three translations and one rotation) parallel robot using dynamic performance indices and angular constraints within and amongst limbs. The architecture of the robot is briefly addressed with emphasis on the mechanical realization of the articulated traveling plate for achieving a lightweight yet rigid design. On the basis of the kinematic singularity analysis, two types of transmission angle constraints are considered to ensure the kinematic performance. A simplified model of rigid body dynamics is then formulated, with which two global dynamic performance indices are proposed for minimization by taking into account both inertial and centrifugal/Coriolis effects. In addition, the servomotor specifications are estimated using the Extended Adept Cycle. The proposed approach has successfully been employed to develop a prototype machine.

References

References
1.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.
2.
Clavel
,
R.
, 1988, “
Delta, a Fast Robot With Parallel Geometry
,”
18th International Symposium on Industrial Robots (ISIR)
, Sydney, Australia, pp.
91
100
.
3.
Pierrot
,
F.
,
Nabat
,
V.
,
Krut
,
S.
, and
Poignet
,
P.
, 2009, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.
4.
Pierrot
,
F.
, and
Company
,
O.
, 1999, “
H4: A New Family of 4-DOF Parallel Robots
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Atlanta, GA, pp.
508
513
.
5.
Krut
,
S.
,
Company
,
O.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
, 2003, “
I4: A New Parallel Mechanism for SCARA Motions
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA’03)
, Taipei, Taiwan, pp.
1875
1880
.
6.
Nabat
,
V.
,
de la O Rodriguez
,
M.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
, 2005, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’05)
, Alberta, Canada, pp.
1202
1207
.
7.
Gosselin
,
C. M.
, and
Angeles
,
J.
, 1991, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
8.
Miller
,
K.
, 2002, “
Maximization of Workspace Volume of 3-DOF Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
347
350
.
9.
Miller
,
K.
, 2004, “
Optimal Design and Modeling of Spatial Parallel Manipulators
,”
Int. J. Robot. Res.
,
23
(
2
), pp.
127
140
.
10.
Stock
,
M.
, and
Miller
,
K.
, 2004, “
Optimal Kinematic Design of Spatial Parallel Manipulators: Application to Linear Delta Robot
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
292
301
.
11.
Choi
,
H. B.
,
Konno
,
A.
, and
Uchiyama
,
M.
, 2010, “
Design, Implementation, and Performance Evaluation of a 4-DOF Parallel Robot
,”
Robotica
,
28
(
1
), pp.
107
118
.
12.
Huang
,
T.
,
Li
,
Z. X.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
C. M.
, 2004, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
449
455
.
13.
Laribi
,
M. A.
,
Romdhanea
,
L.
, and
Zeghloulb
,
S.
, 2007, “
Analysis and Dimensional Synthesis of the DELTA Robot for a Prescribed Workspace
,”
Mech. Mach. Theory
,
42
(
7
), pp.
859
870
.
14.
Liu
,
X. J.
, and
Wang
,
J. S.
, 2007, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1210
1224
.
15.
Liu
,
X. J.
,
Wang
,
J. S.
,
Oh
,
K. K.
, and
Kim
,
J.
, 2004, “
A New Approach to the Design of a DELTA Robot With a Desired Workspace
,”
J. Intell. Robot. Syst.
,
39
(
2
), pp.
209
225
.
16.
Corbel
,
D.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
, 2010, “
Actuation Redundancy as a Way to Improve the Acceleration Capabilities of 3T and 3T1R Pick-and-Place Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
4
), pp.
041002
-1–041002-
13
.
17.
Yoshikawa
,
T.
, 1985, “
Dynamic Manipulability of Robot Manipulators
,”
J. Rob. Syst.
,
2
(
1
), pp.
113
124
.
18.
Ma
,
O.
, and
Angeles
,
J.
, 1990, “
The Concept of Dynamic Isotropy and Its Applications to Inverse Kinematics and Trajectory Planning
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA’90)
, Cincinnati, OH, pp.
481
486
.
19.
Asada
,
H.
, 1984, “
Dynamic Analysis and Design of Robot Manipulators Using Inertia Ellipsoids
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA’84)
, Atlanta, pp.
94
102
.
20.
Tadokoro
,
S.
,
Kimura
,
I.
, and
Takamori
,
T.
, 1991, “
A Measure for Evaluation of Dynamic Dexterity Based on a Stochastic Interpretation of Manipulator Motion
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA’91)
, Pisa, Italy, pp.
509
514
.
21.
Ma
,
O.
, and
Angeles
,
J.
, 1993, “
Optimum Design of Manipulators Under Dynamic Isotropy Conditions
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA’93)
, Atlanta, GA, pp.
470
475
.
22.
Miller
,
K.
, and
Clavel
,
R.
, 1992, “
The Lagrange-Based Model of Delta-4 Robot Dynamics
,”
Robotersysteme
,
8
(
4
), pp.
49
54
.
23.
Miller
,
K.
, 1995, “
Experimental Verification of Modeling of Delta Robot Dynamics by Direct Application of Hamilton’s Principle
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA’95)
, Nagoya, Japan, pp.
532
537
.
24.
Codourey
,
A.
, 1996, “
Dynamic Modeling and Mass Matrix Evaluation of the Delta Parallel Robot for Axes Decoupling Control
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’96)
, pp.
1211
1218
.
25.
Codourey
,
A.
, 1999, “
Dynamic Modeling of Parallel Robots for Computer-Torque Control Implementation
,”
Int. J. Robot. Res.
,
17
(
12
), pp.
1325
1336
.
26.
Choi
,
H. B.
,
Konno
,
A.
, and
Uchiyama
,
M.
, 2004, “
Inverse Dynamic Analysis of a 4-DOF Parallel Robot H4
,”
Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS’04)
, pp.
3501
3506
.
27.
Huang
,
T.
,
Mei
,
J. P.
,
Li
,
Z. X.
,
Zhao
,
X. M.
, and
Chetwynd
D. G.
, 2005, “
A Method for Estimating Servomotor Parameters of a Parallel Robot for Rapid Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
596
601
.
28.
Staicu
,
S.
, 2009, “
Recursive Modeling in Dynamics of Delta Parallel Robot
,”
Robotica
,
27
(
2
), pp.
199
207
.
29.
Company
,
O.
,
Pierrot
,
F.
,
Krut
,
S.
, and
Nabat
,
V.
, 2009, “
Simplified Dynamic Modeling and Improvement of a Four-Degree-of-Freedom Pick-and-Place Manipulator With Articulated Moving Platform
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
223
(
1
), pp.
13
27
.
30.
Zhang
,
L. M.
,
Mei
,
J. P.
,
Zhao
,
X. M.
, and
Huang
,
T.
, 2011, “
Dimensional Synthesis of the Delta Robot Using Transmission Angle Constraints
,”
Robotica
,
30
, pp.
343
349
.
31.
Balli
,
S. S.
, and
Chand
,
S.
, 2002, “
Transmission Angle in Mechanisms
,”
Mech. Mach. Theory
,
37
(
2
), pp.
175
195
.
32.
Krut
,
S.
,
Company
,
O.
,
Nabat
,
V.
, and
Pierrot
,
F.
, 2006, “
Heli4: A Parallel Robot for SCARA Motions With a Very Compact Traveling Plate and a Symmetrical Design
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’06)
, Beijing, China, pp.
1656
1661
.
33.
Available at: http://www.abb.com.
34.
Available at: http://industrial.panasonic.com.
You do not currently have access to this content.