This paper presents a new way of structure composition of single-driven metamorphic mechanisms to develop a systematic and modularized structure synthesis methodology of metamorphic mechanisms based on augmented Assur groups (AAGs). Planar metamorphic mechanisms can hence be constructed based on the developed AAGs by applying the structure composition rule of general planar mechanisms formed by Assur groups (AGs). First, the one-mobility AAGs are introduced based on class II and class III AGs; the structure formulation and composition methodology of planar metamorphic mechanisms are then proposed based on the AAGs, and the basic problems including mobility and synthesis of constrained metamorphic working mobility-configuration are investigated. This leads to the investigation of the degenerated equivalent AGs of AAGs in the metamorphic process and the corresponding kinematic characteristics, providing references for kinematic synthesis of metamorphic mechanisms. Further, a typical spatial metamorphic group is introduced based on the concept of AAGs, and the structure formation and composition of spatial metamorphic mechanisms are presented. Examples show that both planar and spatial metamorphic mechanisms can be constructed by utilizing the one-mobility blocks extended from the AGs.

References

References
1.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
Trans. ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
2.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2005, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
Trans. ASME J. Mech. Des.
,
127
(
4
), pp.
610
619
.
3.
Liu
,
C. H.
, and
Yang
,
T. L.
, 2004, “
Essence and Characteristics of Metamorphic Mechanisms and Their Metamorphic Ways
.”
Proceedings of the 11th World Congress in Mechanism and Machine Science
,
Tianjin, China
, Apr., pp.
1285
1288
.
4.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
, 2006, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
Trans. ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.
5.
Wang
,
D.
, and
Dai
,
J. S.
, 2007, “
Theoretical Foundation of Metamorphic Mechanisms and Its Synthesis
,”
Chin. J. Mech. Eng.
,
43
(
8
), pp.
32
42
.
6.
Li
,
S.
,
Zhang
,
Y.
,
Yang
,
S.
, and
Wang
,
H. G.
, 2009, “
Joint-Gene Based Variable Topological Representations and Configuration Transformations
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
, June 22–24, pp.
348
354
.
7.
Zhen
,
Q.
,
Fang
,
Y.
, and
Ehmann
,
K. F.
, 2011, “
Topological Structural Synthesis of 4-DOF Serial-Parallel Hybrid Mechanisms
,”
Trans. ASME J. Mech. Des.
,
133
(
9
), p.
091008
.
8.
Ding
,
H.
, and
Huang
,
Z.
,2009, “
Isomorphism Identification of Graphs: Especially for the Graphs of Kinematic Chains
,”
Mech. Mach. Theory
,
44
(
1
), pp.
122
139
.
9.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
, 2012, “
Constraint Analysis and Bifurcated Motion of the 3PUP Parallel Mechanism
,”
Mech. Mach. Theory
,
47
(3)
, pp.
256
269
.
10.
Li
,
S.
, 1990, “
Computer-Aided Structure Synthesis of Spatial Kinematic Chains
,”
Mech. Mach. Theory
,
25
(
6
), pp.
645
653
.
11.
Yan
,
H.-S.
, 1992, “
A Methodology for Creative Mechanism Design
,”
Mech. Mach. Theory
,
27
(
3
), pp.
235
242
.
12.
Li
,
S.
,
Song
,
G.
,
Du
,
L.
, and
Zhang
,
G.
, 2002, “
Identification of Isomorphism and Inversions of Kinematic Chains Using Loop-Link-Joint-Matrix
,”
Chin. J. Mech. Eng.
,
38
(
1
), pp.
149
153
.
13.
Li
,
S.
,
Wang
,
D.
, and
Dai
,
J.
, 2009, “
Topological Presentation of Kinematic Chains With Loops and Orientation of Joints Axes
,”
Chin. J. Mech. Eng.
,
45
(
6
), pp.
34
40
.
14.
Assur
,
L. V.
, 1913, “
Investigation of Plane Hinged Mechanisms With Lower Pairs From the Point of View of Their Structure and Classification (in Russian): Part I
,”
Bull. Petrograd Polytech. Inst.
,
20
, pp.
329
386
.
15.
Collard
,
J.-F.
, and
Gosselin
,
C.
, 2011, “
Optimal Synthesis of a Planar Reactionless Three-Degree-of-Freedom Parallel Mechanism
,”
Trans. ASME J. Mech. Robot.
,
3
(
4
), p.
041009
.
16.
Crossley
,
F. R. E.
, 1964, “
A Contribution to Gruebler’s Theory in the Number Synthesis of Plane Mechanisms
,”
Trans. ASME J. Eng. Ind.
,
86
(1)
, pp.
1
8
.
17.
Manolescu
,
N. I.
, 1968, “
For a United Point of View in the Study of the Structural Analysis of Kinematic Chains and Mechanisms
,”
J. Mech.
,
3
(
3
), pp.
149
169
.
18.
Verho
,
A.
, 1973, “
An Extension of the Concept of the Group
,”
Mech. Mach. Theory
,
8
(
2
), pp.
249
256
.
19.
Mruthyunjays
,
T. S.
, 1979, “
Structural Synthesis by Transformation of Binary Chains
,”
Mech. Mach. Theory
,
14
(
4
), pp.
221
231
.
20.
Sohn
,
W. J.
, and
Freudenstein
,
F.
, 1986, “
An Application of Dual Graphs to the Automatic Generation of the Kinematic Structure of Mechanisms
,”
Trans. ASME J. Mech. Trans. Auto. Des.
,
108
, pp.
392
398
.
21.
Li
,
S.
, 1995, “
A Method of Disassembling Assur-Groups for Identifying and Modelling by Computer
,”
J. Northeast. Univ., Nat. Sci.
,
16
(
2
), pp.
198
201
.
22.
Chu
,
J. K.
, and
Cao
,
W. Q.
, 1998, “
Systemics of Assur Groups With Multiple Joints
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1127
1133
.
23.
Iulian
,
P.
, and
Dan
,
B. M.
, 2008, “
Structural Design of Planar Mechanisms With Dyads
,”
Multibody Syst. Dyn.
,
19
(
4
), pp.
407
425
.
24.
Li
,
S.
, and
Hong
,
C.
, 1995, “
A New Method for Computer Identifying and Modelling of Planar Linkages
,”
Proceeding of 9th World Congress on The Theory of Machine and Mechanisms
,
Milano, Italy
, pp.
278
281
.
25.
Zeng
,
Q.
, and
Fang
,
Y.
, 2012, “
Structural Synthesis and Analysis of Serial-Parallel Hybrid Mechanisms With Spatial Multi-Loop Kinematic Chains
,”
Mech. Mach. Theory
,
49
, pp.
198
215
.
26.
Chuenchom
,
T.
, and
Kota
,
S.
, 1997, “
Synthesis of Programmable Mechanisms Using Adjustable Dyads
,”
Trans. ASME J. Mech. Des.
,
11
(
6
), pp.
232
237
.
27.
Tang
,
L.
, and
Sun
,
X.
, 2009, “
Method and Realization of Computer-Aided Combination of Assur Groups in Conceptual Design of Planar Linkage Mechanisms
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
, June 22–24, pp.
123
128
.
28.
McCarthy
,
J. M.
, 2011, “
21st Century Kinematics: Synthesis, Compliance, and Tensegrity
,”
Trans. ASME, J. Mech. Robot.
,
3
(
2
), p.
020201
.
29.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
, 2008, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
Trans. ASME J. Mech. Des.
,
130
(
7
), p.
072303
.
30.
Zhang
,
L.
, and
Dai
,
J. S.
, 2009, “
Metamorphic Techniques and Geometric Reconfiguration Principles
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
, June 22–24, pp.
32
40
.
31.
Zhang
,
L.
, and
Dai
,
J. S.
, 2009, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
Trans. ASME J. Mech. Robot.
,
1
, p.
011012
.
32.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
, 2010, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
Trans. ASME J. Mech. Des.
,
132
(
12
), p.
121001_1
-
11
.
33.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
, 2009, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
Trans. ASME J. Mech. Robot.
,
1
(
4
), p.
041007
.
34.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
, 2010, “
Constraint Analysis on Mobility Change in the Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
, pp.
1864
1876
.
35.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
, 2011, “
Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction
,”
Trans. ASME, J. Mech. Des.
,
133
(
5
), p.
051001
.
36.
Zhang
,
W.
,
Ding
,
X.
, and
Dai
,
J. S.
, 2011, “
Morphological Synthesis of Metamorphic Mechanisms Based on Constraint Variation
,”
J. Mech. Eng. Sci.
,
225
(
12
), pp.
2297
2310
.
37.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
Trans. ASME, J. Mech. Robot.
,
3
, p.
031006
.
38.
Zhao
,
J.-S.
,
Wang
,
J.-Y.
,
Chu
,
F.
,
Feng
,
Z.-J.
, and
Dai
,
J. S.
, 2012, “
Mechanism Synthesis of a Foldable Stair
,”
Trans. ASME J. Mech. Robot.
,
4
(
1
), p.
014502
.
39.
Li
,
S.
, and
Dai
,
J. S.
, 2010, “
Structure of Metamorphic Mechanisms With the Augmented Assur Groups
,”
Chin. J. Mech. Eng.
,
46
(
13
), pp.
22
30
.
40.
Li
,
S.
, and
Dai
,
J. S.
, 2011, “
Augmented Adjacency Matrix for Topological Configuration of the Metamorphic Mechanisms
,”
J. Adv. Mech. Des. Syst. Manuf.
,
5
(
3
), pp.
187
198
.
41.
Dai
,
J. S.
, “
Robotic Hand With Palm Section Comprising Several Parts Able to Move Relative to Each Other
,” Patent No. WO/2005/105391, Priority Date: 10 November 2005, International Patent No. PCT/GB2005/001665, UK Patent No. GB04 095 48.5 , 2004, Europe Patent No. EP05740527.6, U.S. Patent No. US 11/587,766, China Patent No. CN200580018189.6.
42.
Dai
,
J. S.
,
Wang
,
D. L.
, and
Cui
,
L.
, 2009, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand—Metahand
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
942
947
.
43.
Cui
,
L.
, and
Dai
,
J. S.
, 2011, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
Trans. ASME J. Mech. Robot.
,
3
(
2
), p.
021001
.
44.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
, 2011, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. HR
,
8
(
3
), pp.
459
479
.
You do not currently have access to this content.