The spatial Burmester problem is studied in this work, focusing on the synthesis of CCCC and RCCC linkages for rigid-body guidance, where R stands for revolute, C for cylindrical pair. The synthesis equations for CC and RC dyads are formulated using dual algebra. The formulation is developed in such a way that it leads to a robust solution, based on a semigraphical approach, which produces all the real solutions to the problem of CC-dyad synthesis for five given poses. This eases the equation-solving process by filtering out the complex solutions, while allowing for the handling of the special cases of none or infinitely many solutions. The synthesis procedure is illustrated with examples for four and five given poses.

References

References
1.
McCarthy
,
J. M.
, 2011, “
21st Century Kinematics: Synthesis, Compliance, and Tensegrity
,”
ASME J. Mech. Rob.
,
3
(
2
),
020201
.
2.
Pisla
,
D.
,
Ceccarelli
,
M.
,
Husty
,
M.
, and
Corves
,
B.
, 2010, “
New Trends in Mechanism Science: Analysis and Design
,”
Mechanisms and Machine Science
,
Springer
,
New York
.
3.
Kocabas
,
H.
, 2009, “
Gripper Design With Spherical Parallelogram Mechanism
,”
ASME J. Mech. Des.
,
131
(
7
),
075001
.
4.
McCarthy
,
J. M.
, and
Soh
,
G. S.
, 2011,
Geometric Design of Linkages
,
Springer
,
New York
.
5.
Angeles
,
J.
, 1982,
Spatial Kinematic Chains: Analysis, Synthesis, and Optimisation
,
Springer-Verlag
,
Berlin
.
6.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanisms Design
,
Wiley
,
New York
.
7.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
New York
.
8.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
9.
Lichtenheldt
,
W.
, 1967,
Konstruktionslehre der Getriebe
,
Akademie-Verlag
,
Berlin
.
10.
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1984,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
,
New Jersey
.
11.
Ravani
,
B.
, and
Roth
,
B.
, 1983, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, pp.
460
467
.
12.
Hayes
,
M. J. D.
, and
Zsombor-Murray
,
P. J.
, 2002, “
Solving the Burmester Problem Using Kinematic Mapping
,” Proceedings of DETC’2002, Montreal, Paper No. MECH-34378.
13.
Huang
,
C.
, and
Huang
,
B.
, 2009, Spatial Generalization of the Planar Path Generation Problem,
Computational Kinematics
,
A.
Kecskeméthy
, and
A.
Muller
, ed.,
Springer
,
New York
, pp.
117
124
.
14.
Myszka
,
D. H.
,
Murray
,
A. P.
, and
Schmiedeler
,
J. P.
, 2009, “
Assessing Position Order in Rigid Body Guidance: An Intuitive Approach to Fixed Pivot Selection
,”
J. Mech. Des.
,
131
(
1
),
014502
.
15.
Chen
,
C.
,
Bai
,
S.
, and
Angeles
,
J.
, 2008, “
A Comprehensive Solution of the Classic Burmester Problem
,”
CSME Trans.
,
32
(
2
), pp.
137
154
.
16.
Hartenberg
,
R. S.
, and
Denavit
,
J.
, 1964, 1967, ”
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
17.
Zimmerman
,
J. R.
, 1967, “
Four-Precision-Point Synthesis of the Spherical Four-Bar Function Generator
,”
J. Mech.
,
2
(
1
), pp.
133
139
.
18.
Chiang
,
C. H.
, 1988,
Kinematics of Spherical Mechanism
,
Cambridge University Press
,
Cambridge
.
19.
Meyer zur Capellen
,
W.
, and
Dittrich
,
G.
, 1970, “
Adjustable Spherical Four-Bar Linkage
,”
Bulletin of Mechanical Engineering Education
,
Pergamon Press
,
Oxford
, pp.
341
342
.
20.
Angeles
,
J.
, and
Bai
,
S.
, 2010, “
A Robust Solution of the Spherical Burmester Problem
,” Proceedings of ASME DETC2010, Montreal, Paper No. MECH-28189.
21.
Brunnthaler
,
K.
,
Schrocker
,
H. P.
, and
Husty
,
M.
, 2006, “
Synthesis of Spherical Four-Bar Mechanisms Using Spherical Kinematic Mapping
,”
Advances in Robot Kinematics
,
J.
Lennarcic
and
B.
Roth
, ed.,
Springer
,
The Netherlands
, pp.
377
384
.
22.
Tipparthi
,
H.
, and
Larochelle
,
P.
, 2011, “
Orientation Order Analysis of Spherical Four-Bar Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
4
),
044501
.
23.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2003, “
Dimensional Synthesis of Bennett Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
98
104
.
24.
Brunnthaler
,
K.
,
Schrocker
,
H. P.
, and
Husty
,
M.
, 2005, “
A New Method for the Synthesis of Bennett Mechanisms
,”
Proceedings of CK2005 International Workshop on Computational Kinematics
,
Cassino
,
Italy
.
25.
Tsai
,
L. W.
, and
Roth
,
B.
, 1972, “
Design of Dyads With Helical, Cylindrical, Spherical, Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
7
(
1
), pp.
85
102
.
26.
Jamalov
,
R. I.
,
Litvin
,
F. L.
, and
Roth
,
B.
, 1984, “
Analysis and Design of RCCC Linkages
,”
Mech. Mach. Theory
,
19
(
4-5
), pp.
397
407
.
27.
Innocenti
,
C.
, 1995, “
Polynomial Solution of the Spatial Burmester Problem
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
64
68
.
28.
Larochelle
,
P. M.
, 1995, “
On the Design of Spatial 4C Mechanisms for Rigid-Body Guidance Through 4 Positions
,”
Proceedings of 1995 ASME Design Engineering Technical Conferences
,
Boston
,
MA
, pp.
825
832
.
29.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
, 1990, “
Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
59
68
.
30.
Murray
,
A.P.
, and
McCarthy
,
J. M.
, 1994, “
Five Position Synthesis of Spatial CC Dyads
,”
Proceedings of ASME Mechanisms Conference
,
Minneapolis
,
MN
, pp.
143
152
.
31.
Roth
,
B.
, 1967, “
Finite Position Theory Applied to Mechanism Synthesis
,”
ASME J. Appl. Mech.
,
34
(3), pp.
599
605
.
32.
Roth
,
B.
, 1967, “
The Kinematics of Motion Through Finitely Separated Positions
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
591
598
.
33.
Pottmann
,
H.
, and
Wallner
,
J.
, 2001,
Computational Line Geometry
,
Springer-Verlag
,
Heidelberg, Berlin
.
34.
Tsai
,
L. W.
, and
Roth
,
B.
, 1973, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
ASME J. Eng. Ind.
,
95
(B), pp.
603
611
.
35.
Angeles
,
J.
, 1998, “
The Application of Dual Algebra to Kinematic Analysis
,”
Computational Methods in Mechanical Systems
,
J.
Angeles
and
E.
,
Zakhariev
, ed.
Springer-Verlag
,
Heidelberg
, pp.
3
31
.
36.
Fischer
,
I. S.
, 1999,
Dual-number Methods in Kinematics, Statics, and Dynamics
,
CRC Press
,
Boca Raton, FL
.
37.
Pennestrì
,
E.
, and
Stefanelli
,
R.
, 2007, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
,
18
, pp.
323
344
.
38.
Nash
,
S. G.
, and
Sofer
,
A.
, 1996,
Linear and Nonlinear Programming
,
McGraw-Hill
,
New York
.
39.
Angeles
,
J.
, 2002,
Fundamentals of Robotic Mechanical Systems
,
Springer-Verlag
,
New York
.
40.
Forsythe
,
G. E.
, 1970, “
Pitfalls in Computation, or Why a Math Book Isn’t Enough
,”
Am. Math. Monthly
,
27
, pp.
931
956
.
You do not currently have access to this content.