This research presents a tridimensional acceleration sensor based on flexure parallel mechanism (FPM). Three perpendicular compliant limbs with compact monolithic structure are developed to serve as the elastic component for acquiring the inertial signals in each direction. With integrated flexure hinges, each chain containing multiple revolute joints and cantilever beams are designed to carry compressive and tensile loads. First, the structure evolution and kinematics modeling are introduced, followed by the multispring modeling of the directional compliance for the flexure limb. Then, the comprehensive finite-element analysis (FEA) including the strain of the sensitive limbs, modal analysis for total deformation under different frequency is conducted. The compliances calculated by FEA and multispring model are compared. Finally, the dimensional optimization is implemented based on multipopulation genetic algorithm to obtain the optimal flexure parameters. The proposed methods and algorithms are also useful for the analysis and development of other flexure parallel mechanisms.

References

References
1.
Ranganath
,
R.
,
Nair
,
P. S.
,
Mruthyunjaya.
T. S.
, and
Ghosal
,
A.
, 2004, “
A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration
,”
Mech. Mach. Theory
,
39
(
9
), pp.
971
998
.
2.
Liu
,
T.
,
Inoue
,
Y.
, and
Shibata
,
K.
, 2007 “
Wearable Force Sensor With Parallel Structure for Measurement of Ground-Reaction Force
,”
Measurement
,
40
, pp.
644
653
.
3.
Kima
,
G. S.
,
Shina
,
H. J.
, and
Yoon
,
J. W.
, 2008 “
Development of 6-Axis Force/Moment Sensor for a Humanoid Robot’s Intelligent Foot
,”
Sens. Actuators, A
,
141
(
2
), pp.
276
281
.
4.
Nishiwakit
,
K.
,
Murakamit
,
Y.
,
Kagamit
,
S.
,
Kuniyoshit
,
Y.
,
Inabat
,
M.
, and
Inouet
,
H.
, 2002, “
A Six-Axis Force Sensor With Parallel Support Mechanism to Measure the Ground Reaction Force of Humanoid Robot
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, Washington, DC, pp.
2277
2282
.
5.
Ferraresi
,
C.
,
Pastorelli
,
S.
,
Sorli
,
M.
, and
Zhmud
,
N.
, 1995, “
Static and Dynamic Behavior of a High Stiffness Stewart Platform-Based Force/Torque Sensor
,”
J. Rob. Syst.
,
12
(
10
), pp.
883
893
.
6.
Sorli
,
M.
, and
Zhmud
,
N.
, 1993, “
Investigation of Force and Moment Measurement System for a Robotic Assembly Hand
,”
Sens. Actuators, A
,
37–38
, pp.
651
657
.
7.
Hou
,
Y. L.
,
Zeng
,
D. X.
,
Yao
,
J. T.
,
Kang
,
K. J.
,
Lu
,
L.
, and
Zhao
,
Y. S.
, 2009, “
Optimal Design of a Hyperstatic Stewart Platform-Based Force/Torque Sensor With Genetic Algorithms
,”
Mechatronics
,
19
, pp.
199
204
.
8.
Yao
,
J. T.
,
Hou
,
Y. L.
,
Wang
,
H.
, and
Zhao
,
Y. S.
, 2008,
Isotropic Design of Stewart Platform-Based Force Sensor
(
Lecture Notes in Computer Science
),
Springer-Verlag Berlin Heidelberg
, Vol.
5315
, pp.
723
732
.
9.
Kerr
,
D. R.
, 1989, “
Analysis, Properties, and Design of a Stewart-Platform Transducer
,”
J. Mech. Transm. Autom. Des.
,
111
, pp.
25
28
.
10.
Dwarakanath
,
T. A.
,
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
, 2001, “
Design and Development of a Stewart Platform Based Force-Torque Sensor
,”
Mechatronics
,
11
(
7
), pp.
793
809
.
11.
Jin
,
Z. L.
,
Gao
,
F.
, and
Zhang
,
X. H.
, 2003, “
Design and Analysis of a Novel Isotropic Six-Component Force/Torque Sensor
,”
Sens. Actuators A
,
109
, pp.
17
20
.
12.
Zhang
,
D.
,
Bi
,
Z. M.
, and
Li
,
B. Z.
, 2009, “
Design and Kinetostatic Analysis of a New Parallel Manipulator
,”
Rob. Comput.-Integr. Manufact.
,
25
, pp.
782
791
.
13.
Nguyen
,
C. C.
,
Zhou
,
Z. L.
, and
Bryfogis
,
M.
, 1995, “
A Robotically Assisted Munition Loading System
,”
J. Rob. Syst.
,
12
(
12
), pp.
871
881
.
14.
Yang
,
G. L.
,
Chen
,
I. M.
,
Chen
,
W. H.
, and
Lin
,
W.
, 2004, “
Kinematic Design of a Six-DOF Parallel-Kinematics Machine With Decoupled-Motion Architecture
,”
IEEE Trans. Rob. Autom.
,
20
(
5
), pp.
876
884
.
15.
Li
,
Y. M.
, and
Xu
,
Q. X.
, 2008, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.
16.
Chen
,
S. L.
,
Chang
,
T. H.
, and
Lin
,
Y. C.
, 2006, “
Applications of Equivalent Components Concept on the Singularity Analysis of TRR-XY Hybrid Parallel Kinematic Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
30
(
7–8
), pp.
778
788
.
17.
Refaat
,
S.
,
Herve
,
J. M.
, and
Nahavandi
,
S.
, 2007, “
Two-Mode Overconstrained Three-DOFs Rotational Translational Linear Motor Based Parallel-Kinematics Mechanism for Machine Tool Applications
,”
Robotica
,
25
, pp.
461
466
.
18.
Zhang
,
D.
,
Xi
,
F.
,
Mechefske
,
C.
, and
Sherman
,
Y. T. L.,
2004, “
Analysis of Parallel Kinematic Machines With Kinetostatic Modelling Method
,”
Rob. Comput.-Integr. Manuf.
,
20
(
2
), pp.
151
165
.
19.
Dunlop
,
G. R.
, and
Jones
,
T. P.
, 1999, “
Position Analysis of a Two DOF Parallel Mechanism—Canterbury Tracker
,”
Mech. Mach. Theory
,
34
, pp.
599
614
.
20.
Lee
,
K. M.
, and
Arjunan
,
S.
, 1991, “
A Three-Degrees-of-Freedom Micromotion In-Parallel Actuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
634
641
.
21.
Jensen
,
K. A.
,
Lusk
,
C. P.
, and
Howell
,
L. L.
, 2006, “
An XYZ Micromanipulator With Three Translational Degrees of Freedom
,”
Robotica
,
24
(
3
), pp.
305
314
.
22.
Palmer
,
J. A.
,
Dessent
,
B.
,
Mulling
,
J. F.
,
Usher
,
T.
,
Grant
,
E.
,
Eischen
,
J. W.
,
Kingon
,
A. I.
, and
Franzon
,
P. D.
, 2004, “
The Design and Characterization of a Novel Piezoelectric Transducer-Based Linear Motor
,”
IEEE/ASME Trans. Mechatron.
,
13
, pp.
441
450
.
23.
Hostens
,
I.
,
Anthonis
,
J.
, and
Ramon
,
H.
, 2005, “
New Design for a 6 Dof Vibration Simulator with Improved Reliability and Performance
,”
Mech. Syst. Signal Process.
,
19
(
1
), pp.
105
122
.
24.
Liu
,
H.
,
Gosselin
,
C.
, and
Laliberté
,
T.
, 2012, “
Conceptual Design and Static Analysis of Novel Planar Spring-Loaded Cable-Loop-Driven Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021001
.
25.
Coste
,
M.
, 2012, “
Simple Proof That Generic 3-RPR Manipulators Have Two Aspects
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011008
.
26.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
,
Nahon
,
M. N.
, and
Gosselin
,
C. M.
, 2000, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
, pp.
17
24
.
27.
Howell
,
L. L.
,
Compliant Mechanisms
,
Wiley
,
New York
, 2001.
28.
Venanzi
,
S.
,
Giesen
,
P.
, and
Parenti-Castelli
,
V.
, 2005, “
A Novel Technique for Position Analysis of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
,
40
, pp.
1224
1239
.
29.
Moon
,
Y. M.
, 2007, “
Bio-Mimetic Design of Finger Mechanism With Contact Aided Compliant Mechanism
,”
Mech. Mach. Theory
,
42
, pp.
600
611
.
30.
Dong
,
W.
,
Sun
,
L. N.
, and
Du
,
Z. J.
, 2007, “
Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators
,”
Sens. Actuators, A
,
135
, pp.
250
256
.
31.
Wei
,
W.
, and
Simaan
,
N.
, 2010, “
Design of Planar Parallel Robots With Preloaded Flexures for Guaranteed Backlash Prevention
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011012
.
32.
Midhaa
,
A.
,
Howell
,
L.
, and
Norton
,
T.
, 2000, “
Limit Positions of Compliant Mechanisms Using the Pseudo-Rigid-Body Model Concept
,”
Mech. Mach. Theory
,
35
, pp.
99
115
.
33.
Liu
,
C.
,
Foundations of MEMS
,
Prentice-Hall
,
Englewood Cliffs, NJ
, 2005.
You do not currently have access to this content.