This is a brief note expanding on the aspect of Fayet (2002, “Bobillier Formula as a Fundamental Law in Planar Motion,” Z. Angew. Math. Mech., 82(3), pp. 207–210), which investigates the Bobillier formula by considering the properties up to the second order planar motion. In this note, the complex number forms of the Euler Savary formula for the radius of curvature of the trajectory of a point in the moving complex plane during one parameter planar motion are taken into consideration and using the geometrical interpretation of the Euler Savary formula, Bobillier formula is established for one parameter planar motions in the complex plane. Moreover, a direct way is chosen to obtain Bobillier formula without using the Euler Savary formula in the complex plane. As a consequence, the Euler Savary given in the complex plane will appear as a particular case of Bobillier formula.

References

1.
Beyer
,
R.
, 1963,
The Kinematic Synthesis of Mechanisms
,
Chapman and Hall, Ltd.
,
London, England
.
2.
Erdman
,
A. G.
, 1993,
Modern Kinematics, Developments in the Last Forty Years
(Wiley Series in Design Engineering),
John Wiley and Sons, Inc.
,
New York
.
3.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
, 2001,
Mechanism Design
, 4th ed.,
Prentice-Hall, Inc.
,
Upper Saddle River, New Jersey
, Vol.
1
.
4.
Hain
,
K.
, 1967,
Applied Kinematics
, 2nd ed.,
McGraw-Hill Book Company, Inc.
,
New York
.
5.
Hall
,
A. S.
, Jr.
, 1986,
Kinematics and Linkage Design
,
Waveland Press, Inc.
,
Prospect Heights, IL
(Originally published by Prentice-Hall Inc., 1961).
6.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon Press, Ltd.
,
Oxford, England
.
7.
Blaschke
,
W.
, and
Müller
,
H. R.
, 1956, Ebene Kinematik, Verlag von R. Oldenbourgh, München.
8.
Uicker
,
J. J.
, Jr.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
, 2011,
Theory of Machines and Mechanisms
, 4th ed.,
Oxford University Press, Inc.
,
New York
.
9.
Sandor
,
G. N.
,
Erdman
,
A. G.
,
Hunt
,
L.
, and
Raghavacharyulu
,
E.
, 1982, “
New Complex-Number Forms of the Euler-Savary Equation in a Computer-Oriented Treatment of Planar Path-Curvature Theory for Higher-Pair Rolling Contact
,”
ASME J. Mech. Des.
,
104
, pp.
227
232
.
10.
Sandor
,
G. N.
,
Erdman
,
A. G.
,
Hunt
,
L.
, and
Raghavacharyulu
,
E.
, 1982, “
New Complex-Number Forms of the Cubic of Stationary Curvature in a Computer-Oriented Treatment of Planar Path-Curvature Theory for Higher-Pair Rolling Contact
,”
ASME J. Mech. Des.
,
104
, pp.
233
238
.
11.
Tutar
,
A.
, and
Düldül
,
M.
, 2001, “
On the Moving Coordinate System on the Complex Plane and Pole Points
,”
Bull. Pure Appl. Sci. Sec. E, Math. Stat.
,
20
(
1
), pp.
1
6
.
12.
Masal
,
M.
,
Tosun
,
M.
, and
Pirdal
,
A. Z.
, 2010, “
Euler Savary Formula for the One Parameter Motions in the Complex Plane C
,”
Int. J. Phys. Sci.
,
5
(
1
), pp.
6
10
.
13.
Sandor
,
G. N.
,
Arthur
,
G. E.
, and
Raghavacharyulu
,
E.
, 1985, “
Double Valued Solutions of the Euler-Savary Equation and Its Counterpart in Bobillier’s Construction
,”
Mech. Mach. Theory
,
20
(
2
), pp.
145
178
.
14.
Sandor
,
G. N.
,
Xu
,
Y.
, and
Weng
,
T.-C.
, 1990, “
A Graphical Method for Solving the Euler-Savary Equation
,”
Mech. Mach. Theory
,
25
(
2
), pp.
141
147
.
15.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North Holland Publishing Company
,
Amsterdam/New York/Oxford
.
16.
Garnier
,
R.
, 1956,
Cours de cinematique
,
Gauthier-Villar
,
Paris
, p.
38
.
17.
Dijskman
,
E. A.
, 1976,
Motion Geometry of Mechanism
,
Cambridge University Press
,
Cambridge
.
18.
Fayet
,
M.
, 1988, “
Une Nouvelle Formule Relative Aux Courbures Dans un Mouvement Plan
,”
Mech. Mach. Theory
,
23
(
2
), pp.
135
139
.
19.
Fayet
,
M.
, 2002, “
Bobillier Formula as a Fundamental Law in Planar Motion
,”
Z. Angew. Math. Mech.
,
82
(
3
), pp.
207
210
.
20.
Waldron
,
K. J.
, and
Kinzel
,
G. L.
, 1999,
Kinematics, Dynamics, and Design of Machinery
,
John Wiley and Sons, Inc.
,
New York
.
You do not currently have access to this content.