Many transgenic animal production techniques require egg cells to be held in place during injection of the transgene. This paper presents a micro-electromechanical systems (MEMS) mechanism that provides cell support, self-centers the cell, and requires a single linear input for actuation. This restraint device uses an innovative spatial mechanism, termed a cylindrical mechanism. The kinematics and design of the restraint are discussed. The MEMS cell restraints were fabricated using a surface micromachining process, after which the mechanism’s cell support, self-centering of the cell, and motion were verified.

References

References
1.
Gordon
,
J. W.
,
Scangos
,
G. A.
,
Plotkin
,
D. J.
,
Barbosa
,
J. A.
, and
Ruddle
,
F. H.
, 1980, “
Genetic Transformation of Mouse Embryos by Microinjection of Purified DNA
,”
Proc. Natl. Acad. Sci. U.S.A.
,
77
(
12
), pp.
7380
7384
.
2.
Hammer
,
R. E.
,
Pursel
,
V. G.
,
Rexroad
,
C. E.
, Jr.
,
Wall
,
R. J.
,
Bolt
,
D. J.
,
Ebert
,
K. M.
,
Palmiter
,
R. D.
, and
Brinster
,
R. L.
, 1985, “
Production of Transgenic Rabbits, Sheep and Pigs by Microinjection
,”
Nature
,
315
, pp.
680
683
.
3.
Zernicka-Goetz
,
M.
,
Pines
,
J.
,
Hunter
,
S. M.
,
Dixon
,
J. P. C.
,
Siemering
,
K. R.
,
Haseloff
,
J.
, and
Evans
,
M. J.
, 1997, “
Following Cell Fate in the Living Mouse Embryo
,”
Development
,
124
, pp.
1133
1137
.
4.
Eroglu
,
A.
,
Lawitts
,
J. A.
,
Toner
,
M.
, and
Toth
,
T. L.
, 2003, “
Quantitative Microinjection of Trehalose Into Mouse Oocytes and Zygotes, and Its Effect on Development
,”
Cryobiology
,
46
(
3
), pp.
121
134
.
5.
Beddington
,
R.
, and
Robertson
,
E.
, 1989, “
An Assessment of the Developmental Potential of Embryonic Stem Cells in the Midgestation Mouse Embryo
,”
Development
,
105
, pp.
733
737
.
6.
Lois
,
C.
,
Hong
,
E. J.
,
Pease
,
S.
,
Brown
,
E. J.
, and
Baltimoredagger
,
D.
, 2002, “
Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors
,”
Science
,
295
(
5556
), pp.
868
872
.
7.
Whitelaw
,
C. A.
,
Radcliffe
,
P. A.
,
Ritchie
,
W. A.
,
Carlisle
,
A.
,
Ellard
,
F. M.
,
Pena
,
R. N.
,
Rowe
,
J.
,
Clark
,
A.
,
King
,
T. J.
, and
Mitrophanous
,
K. A.
, 2004, “
Efficient Generation of Transgenic Pigs Using Equine Infectious Anaemia Virus (EIAV) Derived Vector
,”
FEBS Lett.
,
571
(
1−3
), pp.
233
236
.
8.
Plusa
,
B.
,
Hadjantonakis
,
A.-K.
,
Gray
,
D.
,
Piotrowska-Nitsche
,
K.
,
Jedrusik
,
A.
,
Papaioannou
,
V. E.
,
Glover
,
D. M.
, and
Zernicka-Goetz
,
M.
, 2005, “
The First Cleavage of the Mouse Zygote Predicts the Blastocyst Axis
,”
Nature
,
434
, pp.
391
395
.
9.
Ashkin
,
A.
, 1992, “
Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime
,”
Biophys. J.
,
61
(
2
), pp.
569
582
.
10.
Neuman
,
K. C.
, and
Block
,
S. M.
, 2004, “
Optical Trapping
,”
Rev. Sci. Instrum.
,
75
(
9
), pp.
2787
2809
.
11.
Lee
,
H.
,
Purdon
,
A. M.
, and
Westervelt
,
R. M.
, 2004, “
Manipulation of Biological Cells Using a Microelectromagnet Matrix
,”
Appl. Phys. Lett.
,
85
(
6
), pp.
1063
1065
.
12.
Schnelle
,
T.
,
Muller
,
T.
,
Gradl
,
G.
,
Shirley
,
S. G.
, and
Fuhr
,
G.
, 1999, “
Paired Microelectrode System: Dielectrophoretic Particle Sorting and Force Calibration
,”
J. Electrost.
,
47
(
3
), pp.
121
132
.
13.
Liu
,
X.
,
Kim
,
K.
,
Zhang
,
Y.
, and
Sun
,
Y.
, 2009, “
Nanonewton Force Sensing and Control in Microrobotic Cell Manipulation
,”
Int. J. Robot. Res.
,
28
(
8
), pp.
1065
1076
.
14.
Spearing
,
S. M.
, 2000, “
Materials Issues in Microelectromechanical Systems (MEMS)
,”
Acta Mater.
,
48
(
1
), pp.
179
196
.
15.
Wittwer
,
J. W.
,
Gomm
,
T.
, and
Howell
,
L. L.
, 2002, “
Surface Micromachined Force Gauges: Uncertainty and Reliability
,”
J. Micromech. Microeng.
,
12
, pp.
13
20
.
16.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D.
,
Sun
,
Y.
,
Dual
,
J.
, and
Nelson
,
B.
, 2007, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,”
J. Microelectromech. Syst.
,
16
(
1
), pp.
7
15
.
17.
Chronis
,
N.
, and
Lee
,
L.
, 2005, “
Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
857
863
.
18.
Kim
,
K.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Sun
,
Y.
, 2008, “
Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055013
.
19.
Chan
,
H.
, and
Li
,
W.
, 2003, “
A Thermally Actuated Polymer Micro Robotic Gripper for Manipulation of Biological Cells
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA’03
, September, Vol.
1
, pp.
288
293
.
20.
Jager
,
E. W.
,
Inganas
,
O.
, and
Lundstrom
,
I.
, 2000, “
Microrobots for Micrometer-Size Objects in Aqueous Meida: Potential Tools for Single-Cell Manipulation
,”
Science
,
288
, pp.
2335
2338
.
21.
Ok
,
J.
,
Lu
,
Y.-W.
, and
Kim
,
C. -J. C. C.
, 2006, “
Pneumatically Driven Microcage for Microbe Manipulation in a Biological Liquid Environment
,”
J. Microelectromech. Syst.
,
15
(
6
), pp.
1499
1505
.
22.
Lusk
,
C.
, and
Howell
,
L.
, 2008, “
Components, Building Blocks, and Demonstrations of Spherical Mechanisms in Microelectromechanical Systems
,”
ASME J. Mech. Des.
,
130
(
3
), p.
034503
.
23.
Lusk
,
C.
, and
Howell
,
L.
, 2008, “
Spherical Bistable Micromechanism
,”
ASME J. Mech. Des.
,
130
(
4
), p.
045001
.
24.
Winder
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
, 2009, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021009
.
25.
Jacobsen
,
J.
,
Winder
,
B.
,
Howell
,
L.
, and
Magleby
,
S.
, 2010, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
.
26.
Carter
,
J.
,
Cowen
,
A.
,
Hardy
,
B.
,
Mahadevan
,
R.
,
Stonefield
,
M.
, and
Wilcenski
,
S.
, 1992-2005,
PolyMUMPs Design Handbook: A MUMPs Process
,
11th ed.
,
MEMSCAP, Inc.
,
Durham, NC
.
27.
Jensen
,
K.
,
Lusk
,
C.
, and
Howell
,
L.
, 2006, “
An XYZ Micromanipulator With Three Translational Degrees of Freedom
,”
Robotica
,
1
(
3
), pp.
305
314
.
28.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
John Wiley & Sons, Inc.
,
New York
.
You do not currently have access to this content.