To meet the need for large-range high-precision motion stages, a design methodology of XYZ compliant parallel manipulators (CPMs) is introduced at first. A spatial double four-beam module and a compliant P (prismatic) joint, composed of two spatial double four-beam modules, are then proposed. Starting from a 3-PPPR (R: revolute) translational parallel manipulator, a large-range modular XYZ CPM with identical spatial modules is constructed using the proposed design approach. Normalized analytical models for the large-range modular XYZ CPM are further presented. As a case study, a modular XYZ CPM with a motion range of 10 mm × 10 mm × 10 mm along the positive X-, Y-, and Z-axes is presented in detail, covering the geometrical parameter determination, performance characteristics analysis, buckling check, and actuation force check. The analytical models are compared with the finite element analysis (FEA) models. Finally, the dynamics consideration, manufacturability, and merits are discussed. It is shown that the proposed large-range modular XYZ CPM has the following main merits compared with existing designs: (1) large range of motion up to 20 mm × 20 mm × 20 mm and (2) reduced number of design parameters through the use of identical spatial modules, although the manufacturability is a challenging issue.

References

References
1.
Weckenmann
,
A.
, and
Hoffmann
,
J.
, 2007, “
Long Range 3D Scanning Tunnelling Microscopy
,”
CIRP Ann.—Manuf. Technol.
,
56
(
1
), pp.
525
528
.
2.
Xu
,
Q.
, and
Li
,
Y.
, 2008, “
Design of a Partially Decoupled High Precision XYZ Compliant Parallel Micromanipulator
,”
Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, Sanya, China, Jan. 6–9, pp.
13
18
.
3.
Shinno
,
H.
, and
Yoshioka
,
H.
, 2010, “
A Newly Developed Three-Dimensional Profile Scanner With Nanometer Spatial Resolution
,”
CIRP Ann.—Manuf. Technol.
,
59
(
1
), pp.
525
528
.
4.
Martock Design Limited, 1987, “
Adjustable Mountings
,” U.S. Patent No. 4,635,887.
5.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.
6.
Awtar
,
S.
, and
Parmar
,
G.
, 2010, “
Design of a Large Range XY Nanopostioning System
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, QC, Canada, Aug. 15–18, Paper No. DETC2010-28185.
7.
Quennouelle
,
C.
, and
Gosselin
,
C. M.
, 2008, “
Stiffness Matrix of Compliant Parallel Mechanisms
,”
Proceeding of the 11th International Symposium on Advances in Robot Kinematics (ARK)
, Batz-sur-Mer, France, June 22–26, pp.
331
340
.
8.
Wang
,
H.
, and
Zhang
,
X.
, 2008, “
Input Coupling Analysis and Optimal Design of a 3-DOF Compliant Micro-Positioning Stage
,”
Mech. Mach. Theory
,
43
(
4
), pp.
400
410
.
9.
Wang
,
Y.
, and
Gosselin
,
C. M.
, 2004, “
On the Design of a 3-PRRR Spatial Parallel Compliant Mechanism
,”
Proceeding of the ASME 28th Biennial Mechanisms and Robotics Conference
, Salt Lake City, UT, Sept. 28–Oct. 2.
10.
Pham
,
H.-H.
,
Yeh
,
H. C.
, and
Chen
,
I.-M.
, 2006, “
Micromanipulation System Design Based on Selective Actuation Mechanisms
,”
Int. J. Robot. Res.
,
25
(
2
), pp.
171
185
.
11.
Li
,
Y.
, and
Xu
,
Q.
, 2011, “
A Totally Decoupled Piezo-Driven XYZ Flexure Parallel Micropositioning Stage for Micro/Nanomanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
2
), pp.
265
279
.
12.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
, 2002, “
Kinematic Analysis of a Translational 3-d.o.f. Micro-Parallel Mechanism Using Matrix Method
,”
Adv. Rob.
,
16
(
3
), pp.
251
264
.
13.
Li
,
Y.
, and
Xu
,
Q.
, 2009, “
Design and Optimization of an XYZ Parallel Micromanipulator With Flexure Hinges
,”
J. Intell. Robotic Syst.
,
55
, pp.
377
402
.
14.
Xu
,
Q.
, and
Li
,
Y.
, 2006, “
Stiffness Modeling for an Orthogonal 3-PUU Compliant Parallel Micromanipulator
,”
Proceedings of the 2006 IEEE International Conference on Mechatronic and Automations
, Luoyang, China, June 25–28, pp.
124
129
.
15.
Yue
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
, and
Ge
,
Q.
, 2010, “
Relationship Among Input-Force, Payload, Stiffness and Displacement of a 3-DOF Perpendicular Parallel Micro-Manipulator
,”
Mech. Mach. Theory
,
45
(
5
), pp.
756
771
.
16.
Tang
,
X.
,
Chen
,
I.-M.
, and
Li
,
Q.
, 2006, “
Design and Nonlinear Modeling of a Large-Displacement XYZ Flexure Parallel Mechanism With Decoupled Kinematics Structure
,”
Rev. Sci. Instrum.
,
77
, p.
115101
.
17.
Yun
,
Y.
, and
Li
,
Y.
, 2011, “
Optimal Design of a 3-PUPU Parallel Robot With Compliant Hinges for Micromanipulation in a Cubic Workspace
,”
Rob. Comput.-Integr. Manufact.
,
27
(
6
), pp.
977
985
.
18.
Quyang
,
P. R.
, 2011, “
A Spatial Hybrid Motion Compliant Mechanism: Design and Optimization
,”
Mechatronics
,
21
(
3
), pp.
479
489
.
19.
Werner
,
C.
, 2010, “
A 3D Translation Stage for Metrological AFM
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
20.
Werner
,
C.
,
Rosielle
,
P. C. J. N.
, and
Steinbuch
,
M.
, 2009, “
Design and Realization of a Long-stroke Translation Stage for AFM
,”
Proceedings of the 9th European Society for Precision Engineering and Nanotechnology (Euspen)
, San Sebastian, Spain, June 2–5.
21.
Werner
,
C.
,
Rosielle
,
P. C. J. N.
, and
Steinbuch
,
M.
, 2010, “
Design of a Long Stroke Translation Stage for AFM
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
183
190
.
22.
Henein
,
S.
, and
Barrot
,
F.
, 2011, “
Silicon Flexures for the Sugar-Cube Delta Robot
,”
Proceedings of the 11th European Society for Precision Engineering and Nanotechnology (Euspen)
, Villa Erba, Cernobbio, Lake Como, Italy, May 23–26.
23.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
, 2011, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
(
5
), pp.
680
706
.
24.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2007,
Type Synthesis of Parallel Mechanisms
,
Springer
,
Berlin
.
25.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2002, “
Type Synthesis of Linear Translational Parallel Manipulators
,”
Advances in Robot Kinematics—Theory and Applications
,
J.
Lenarcic
and
F.
Thomas
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
411
420
.
26.
Gogu
,
G.
, 2004, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
23
(
6
), pp.
1021
1039
.
27.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2002, “
Singularity Free Fully-Isotropic Translational Parallel Mechanisms
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
167
174
.
28.
Hao
,
G.
, and
Kong
,
X.
, 2011, “
A Normalization-Based Approach to the Mobility Analysis of Spatial Compliant Multi-Beam Modules
,”
The 13th World Congress in Mechanism and Machine Science
, Guanajuato, México, June 19–25,
A23
-
390
.
29.
Awtar
,
S.
, 2004, “
Analysis and Synthesis of Planer Kinematic XY Mechanisms
,” Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
30.
Awtar
,
S.
, and
Parmar
,
G.
, 2010, “
Physical and Control Systems Design Challenges in Large Range Nanopositioning
,”
The 5th IFAC Symposium on Mechatronic Systems
, Cambridge, MA, Sept. 13–15.
31.
Gultepe
,
E.
,
Nagesha
,
D.
,
Casse
,
B. D. F.
,
Selvarasah
,
S.
,
Busnaina
,
A.
, and
Sridhar
,
S.
, 2008, “
Large Scale 3D Vertical Assembly of Single-Wall Carbon Nanotubes at Ambient Temperatures
,”
Nanotechnology
,
19
, p.
455309
.
32.
Culpepper
,
M. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
,
DiBiasio
,
C. M.
, and
Panas
,
R. M.
, 2011, “
Carbon Nanotube Based Compliant Mechanism
,” U.S. Patent No. US7884525B2.
33.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R.
, and
Culpepper
,
M. L.
, 2010, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
034501
.
34.
Culpepper
,
M.
,
DiBiasio
,
C.
,
Panas
,
R.
,
Magleby
,
S.
, and
Howell
,
L. L.
, 2006, “
Simulation of a Carbon Nanotube-Based Compliant Parallel-Guiding Mechanism: A Nanomechanical Building Block
,”
Appl. Phys. Lett.
,
89
, p.
203111
.
You do not currently have access to this content.