For redundant robotic manipulators, we study the design problem of Jacobian inverse kinematics algorithms of desired performance. A specific instance of the problem is addressed, namely the optimal approximation of the Jacobian pseudo-inverse algorithm by the extended Jacobian algorithm. The approximation error functional is derived for the coordinate-free representation of the manipulator’s kinematics. A variational formulation of the problem is employed, and the approximation error is minimized by means of the Ritz method. The optimal extended Jacobian algorithm is designed for the 7 degrees of freedom (dof) POLYCRANK manipulator. It is concluded that the coordinate-free kinematics representation results in more accurate approximation than the coordinate expression of the kinematics.

References

References
1.
Chiaverini
,
S.
,
Oriolo
,
G.
, and
Walker
,
I. D.
, 2008, “
Kinematically Redundant Manipulators
,”
Springer Handbook of Robotics
,
Springer-Verlag
,
Berlin
, pp.
245
268
.
2.
Tchoń
,
K.
,
Jakubiak
,
J.
, and
Małek
,
Ł.
, 2010, “
Dynamic Jacobian Inverses
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
Springer
,
Dordrecht
, pp.
11
21
.
3.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
, 1992, “
Nearest Optimal Repeatable Control Strategies for Kinematically Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
8
(
3
), pp.
327
337
.
4.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
, 1993, “
Repeatable Generalized Inverse Control Strategies for Kinematically Redundant Manipulators
,”
IEEE Trans. Autom. Control
,
38
(
5
), pp.
689
699
.
5.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
, 1994, “
Singularities, Stable Surfaces, and the Repeatable Behavior of Kinematically Redundant Manipulators
,”
Int. J. Robot. Res.
,
13
(
1
), pp.
207
213
.
6.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
, 1995, “
Calculation of Repeatable Control Strategies for Kinematically Redundant Manipulators
,”
J. Intell. Robotic Syst.
,
14
, pp.
105
130
.
7.
Brockett
,
R. W.
, 1984, “
Robotic Manipulators and the Product of Exponentials Formula
,”
Mathematical Theory of Networks and Systems
,
Springer-Verlag
,
Berlin
, pp.
120
129
.
8.
Shamir
,
T.
, and
Yomdin
,
Y.
, 1988, “
Repeatability of Redundant Manipulators: Mathematical Solution of the Problem
,”
IEEE Trans. Autom. Control
,
33
(
6
), pp.
1004
1009
.
9.
Klein
,
C. A.
, and
Huang
,
C.
, 1983, “
Review of Pseudoinverse Control for Use With Kinematically Redundant Manipulators
,”
IEEE Trans. Syst., Man, Cybern.
,
13
(
2
), pp.
245
250
.
10.
Tchoń
,
K.
, 2008, “
Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1440
1445
.
11.
Tchoń
,
K.
,
Karpińska
,
J.
, and
Janiak
,
M.
, 2009, “
Approximation of Jacobian Inverse Kinematics Algorithms
,”
Int. J. Appl. Math. Comput. Sci.
,
19
, pp.
519
531
.
12.
Tchoń
,
K.
, and
Janiak
,
M.
, 2009, “
Repeatable Approximation of the Jacobian Pseudoinverse
,”
Syst. Control Lett.
,
58
, pp.
849
856
.
13.
Klein
,
C. A.
,
Chu-Jenq
,
C.
, and
Ahmed
,
S.
, 1995, “
A New Formulation of the Extended Jacobian Method and Its Use in Mapping Algorithmic Singularities for Kinematically Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
50
55
.
14.
Klein
,
C. A.
, and
Chu
,
L.-C.
, 1997, “
Comparison of Extended Jacobian and Lagrange Multiplier Based Methods of Resolving Kinematic Redundancy
,”
J. Intell. Robotic Syst.
,
19
, pp.
39
54
.
15.
Ravi
,
V. C.
,
Rakshit
,
S.
, and
Ghosal
,
A.
, 2010, “
Redundancy Resolution Using Tractrix—Simulations and Experiments
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031013
.
16.
Brethé
,
J.-F.
, 2011, “
Optimizing SCARA Design for Higher Repeatability
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021010
.
17.
Gelfand
,
I. M.
, and
Fomin
,
S. V.
, 1963,
Calculus of Variations
,
Prentice-Hall
,
Englewood Cliffs, NJ.
18.
Nazarczuk
,
K.
, and
Mianowski
,
K.
, 1998, “
POLYCRANK—Fast Robot Without Joint Limits
,”
Proceedings of the 12th CISM-IFToMM Symposium ROMANSY
,
Springer-Verlag
,
Berlin
, pp.
317
324
.
19.
Nazarczuk
,
K.
,
Mianowski
,
K.
, and
Luszczak
,
S.
, 2000, “
Development of the Design of POLYCRANK Manipulator Without Joint Limits
,”
Proceedings of the 13th CISM-IFToMM Symposium ROMANSY
,
Springer-Verlag
,
Berlin
, pp.
285
292
.
20.
Selig
,
J. M.
, 2005,
Geometric Fundamentals of Robotics
,
Springer
,
Berlin
.
You do not currently have access to this content.