The improved quadrilateral discretization model for the topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells and each quadrilateral design cell is further subdivided into triangular analysis cells. All kinds of dangling quadrilateral design cells and sharp-corner triangular analysis cells are removed in the improved quadrilateral discretization model to promote the material utilization. Every quadrilateral design cell or triangular analysis cell is either solid or void to implement the discrete topology optimization and eradicate the topology uncertainty caused by intermediate material states. The local stress constraint is directly imposed on each triangular analysis cell to make the synthesized compliant mechanism safe. The binary bit-array genetic algorithm is used to search for the optimal topology to circumvent the geometrical bias against the vertical design cells. Two topology optimization examples of compliant mechanisms are solved based on the proposed improved quadrilateral discretization model to verify its effectiveness.

References

References
1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
31
, pp.
151
179
.
3.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
, 2011, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
, p.
041006
.
4.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
, 2011, “
A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion
,”
ASME J. Mech. Rob.
,
3
, p.
041008
.
5.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
, 2011, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
, p.
011001
.
6.
Su
,
H.
, 2011, “
Mobility Analysis of Flexure Mechanisms via Screw Algebra
,”
ASME J. Mech. Rob.
,
3
, p.
041010
.
7.
Palli
,
G.
,
Berselli
,
G.
,
Melchiorri
,
C.
, and
Vassura
,
G.
, 2011, “
Design of a Variable Stiffness Actuator Based on Flexures
,”
ASME J. Mech. Rob.
,
3
, p.
034501
.
8.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.
9.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
, pp.
493
524
.
10.
Diaz
,
A. R.
, and
Sigmund
,
O.
, 1995, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
,
10
, pp.
40
45
.
11.
Jog
,
C. S.
, and
Haber
,
R. B.
, 1996, “
Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
,
130
, pp.
203
226
.
12.
Poulsen
,
T. A.
, 2002, “
A Simple Scheme to Prevent Checkerboard Patterns and One-Node Connected Hinges in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
24
, pp.
396
399
.
13.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
741
760
.
14.
Pomezanski
,
V.
,
Querin
,
O. M.
, and
Rozvany
,
G. I. N.
, 2005, “
CO-SIMP: Extended SIMP Algorithm With Direct Corner Contact Control
,”
Struct. Multidiscip. Optim.
,
30
, pp.
164
168
.
15.
Haber
,
R. B.
,
Jog
,
S. C.
, and
Bendsoe
,
M. P.
, 1996, “
A New Approach to Variable-Topology Shape Design Using a Constraint on Perimeter
,”
Struct. Multidiscip. Optim.
,
11
, pp.
1
12
.
16.
Petersson
,
J.
, 1999, “
Some Convergence Results in Perimeter-Controlled Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
171
, pp.
123
140
.
17.
Petersson
,
J.
, and
Sigmund
,
O.
, 1998, “
Slope Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
41
, pp.
1417
1434
.
18.
Zhou
,
M.
,
Shyy
,
Y. K.
, and
Thomas
,
H. L.
, 2001, “
Checkerboard and Minimum Member Size Control in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
21
, pp.
152
158
.
19.
Jang
,
G. W.
,
Jeong
,
J. H.
,
Kim
,
Y. Y.
,
Sheen
,
D.
,
Park
,
C.
, and
Kim
,
M. N.
, 2003, “
Checkerboard-Free Topology Optimization Using Non-Conforming Finite Elements
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
1717
1735
.
20.
Jang
,
G. W.
,
Lee
,
S.
,
Kim
,
Y. Y.
, and
Sheen
,
D.
, 2005, “
Topology Optimization Using Non-Conforming Finite Elements: Three-Dimensional Case
,”
Int. J. Numer. Methods Eng.
,
63
, pp.
859
875
.
21.
Belytschko
,
T.
,
Xiao
,
S. P.
, and
Parimi
,
C.
, 2003, “
Topology Optimization With Implicit Functions and Regulation
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
1177
1196
.
22.
Rahmatalla
,
S. F.
, and
Swan
,
C. C.
, 2004, “
A Q4/Q4 Continuum Structural Topology Optimization Implementation
,”
Struct. Multidiscip. Optim.
,
27
, pp.
130
135
.
23.
Matsui
,
K.
, and
Terada
,
K.
, 2004, “
Continuous Approximation of Material Distribution for Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
1925
1944
.
24.
Guest
,
J. K.
,
Prevost
,
J. H.
, and
Belytschko
,
T.
, 2004, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
238
254
.
25.
Saxena
,
A.
, 2008, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
,
130
, p.
082304
.
26.
Zhou
,
H.
, 2010, “
Topology Optimization of Compliant Mechanisms Using Hybrid Discretization Model
,”
ASME J. Mech. Des.
,
132
, p.
111003
.
27.
Zhou
,
H.
, and
Killekar
,
P. P.
, 2011, “
The Modified Quadrilateral Discretization Model for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
, p.
111007
.
28.
Duysinx
,
P.
, and
Bendsoe
,
M. P.
, 1998, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
43
, pp.
1453
1478
.
29.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Boston, MA
.
30.
Kim
,
I. Y.
, and
Weck
,
O. L.
, 2005, “
Variable Chromosome Length Genetic Algorithm for Progressive Refinement in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
29
, pp.
445
456
.
31.
Kim
,
D. S.
,
Jung
,
D. H.
, and
Kim
,
Y. Y.
, 2008, “
Multiscale Multiresolution Genetic Algorithm With a Golden Sectioned Population Composition
,”
Int. J. Numer. Methods Eng.
,
74
, pp.
349
367
.
32.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
, pp.
1005
1012
.
33.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
, 1996, “
Genetic Algorithm-Based Structural Topology Design With Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
,
118
, pp.
89
98
.
34.
Kane
,
C.
, and
Schoenauer
,
M.
, 1996, “
Topological Optimum Design Using Genetic Algorithms
,”
Contr. Cybernet.
,
25
, pp.
1059
1088
.
35.
Duda
,
J. W.
, and
Jakiela
,
M. J.
, 1997, “
Generation and Classification of Structural Topologies Genetic Algorithm Speciation
,”
ASME J. Mech. Des.
,
119
, pp.
127
131
.
36.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
125
, pp.
253
261
.
37.
Zhou
,
H.
, and
Ting
,
K. L.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
,
128
, pp.
551
558
.
You do not currently have access to this content.