A great number of kinematic, kinetostatic, and dynamic models of human diarthrodial joints, such as the hip, the knee, and the ankle, have been presented in the literature. On the contrary, comprehensive models of the lower limb are lacking and often oversimplify its anatomical structures by considering only 2D motion. This paper will focus on the 3D kinematic model of the articulation that involves four bones: the tibia, fibula, talus, and calcaneus. In particular, a new spatial equivalent mechanism with one degree of freedom is proposed for the passive motion simulation of this anatomical complex. The geometry of the mechanism is based on the main anatomical structures, namely the talus, the tibia, and the fibula bones at their interface, on the main ligaments of the ankle joint, and on the interosseus membrane of the leg. An iterative refinement process is presented, that provides the optimal geometry of the mechanism which allows the best fitting of simulation versus measurement data. Simulation results show the efficiency of the proposed mechanism that is believed to play an important role for future developments of models of the whole human lower limb.

References

References
1.
Zwipp
,
H.
,
Rammelt
,
S.
, and
Grass
,
R.
, 2002, “
Ligamentous Injuries About the Ankle and Subtalar Joints
,”
Clin. Podiatr. Med. Surg.
,
19
(
2
), pp.
195
229
.
2.
Kerkhoffs
,
G.
,
Struijs
,
P.
,
Marti
,
R.
,
Blankevoort
,
L.
,
Assendelft
,
W.
, and
Dijk
,
C.
, 2003, “
Functional Treatments for Acute Ruptures of Thelateral Ankle Ligament: A Systematic Review
,”
Acta Orthop. Scand.
,
74
(
1
), pp.
69
77
.
3.
Saltzman
,
C.
,
McIff
,
T.
,
Buckwalter
,
J.
, and
Brown
,
T.
, 2000, “
Total Ankle Replacement Revisited
,”
J. Orthop. Sports Phys. Ther.
,
30
(
2
), pp.
56
67
. Available at: http://www.jospt.org/issues/articleID.415,type.2/article_detail.asphttp://www.jospt.org/issues/articleID.415,type.2/article_detail.asp.
4.
Hintermann
,
B.
, and
Valderrabano
,
V.
, 2003, “
Total Ankle Replacement
,”
Foot Ankle Clin.
,
8
, pp.
375
405
.
5.
Leardini
,
A.
,
O’Connor
,
J.
,
Catani
,
F.
, and
Giannini
,
S.
, 1999, “
A Geometric Model of the Human Ankle Joint
,”
J. Biomech.
,
32
, pp.
585
591
.
6.
Corazza
,
F.
,
O’Connor
,
J.
,
Leardini
,
A.
, and
Parenti Castelli
,
V.
, 2003, “
Ligament Fibre Recruitment and Forces for the Anterior Drawer Test at the Human Ankle Joint
,”
J. Biomech.
,
36
, pp.
363
372
.
7.
Di Gregorio
,
R.
,
Parenti Castelli
,
V.
,
O’Connor
,
J. J.
, and
Leardini
,
A.
, 2004, “
Equivalent Spatial Parallel Mechanisms for the Modelling of the Ankle Passive Motion
,”
Proceedings of ASME DETC 2004, 28th Biennial Mechanisms and Robotics Conference
.
8.
Franci
,
R.
, and
Parenti-Castelli
,
V.
, 2007, “
A 5-5 One Degree of Freedom Fully-Parallel Mechanism for the Modelling of Passive Motion at the Human Ankle Joint
,”
Proceedings of ASME-IDETC/CIE 2007, International Design Engineering Technical Conferences and Computers and Information in Engineering
, pp.
1
8
.
9.
Franci
,
R.
, and
Parenti-Castelli
,
V.
, 2008, “
A One Degree-of-Freedom Spherical Wrist for the Modelling of Passive Motion of the Human Ankle Joint
,”
Proceedings of IAK 2008, Conference on Interdisciplinary Applications of Kinematics
,
A.
Kecskemethy
, ed., pp.
1
13
.
10.
Franci
,
R.
,
Parenti Castelli
,
V.
, and
Sancisi
,
N.
, 2008, “
A Three-Step Procedure for the Modelling of Human Diarthrodial Joints
,”
Proceedings of the RAAD 2008, 17th International Workshop on Robotics in Alpe-Adria-Danube Region
, Ancona, Italy, September 15–17.
11.
Franci
,
R.
,
Parenti-Castelli
,
V.
,
Belvedere
,
C.
, and
Leardini
,
A.
, 2009, “
A New One-DOF Fully Parallel Mechanism for Modelling Passive Motion at the Human Tibiotalar Joint
,”
J. Biomech.
,
42
, pp.
1403
1408
.
12.
Ji
,
Z.
,
Findley
,
T.
,
Chaudhry
,
H.
, and
Bruce
,
B.
, 2004, “
Computational Method to Evaluate Ankle Postural Stiffness With Ground Reaction Forces
,”
J. Rehabil. Res. Dev.
,
41
, pp.
207
214
.
13.
Pilkar
,
R. B.
,
Moosbrugger
,
J. C.
,
Bhatkar
,
V. V.
,
Schilling
,
R. J.
,
Storey
,
C. M.
, and
Robinson
,
C. J.
, 2007, “
A Biomechanical Model of Human Ankle Angle Changes Arising From Short Peri-Threshold Anterior Translations of Platform on Which a Subject Stands
,”
Proceedings of 29th Annual International Conference of IEEE-EMBS
, pp.
4308
4311
.
14.
Hansen
,
A. H.
,
Childress
,
D. S.
,
Miff
,
S. C.
,
Gard
,
S. A.
, and
Mesplay
,
K. P.
, 2004, “
The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses
,”
J. Biomech.
,
37
, pp.
1467
1474
.
15.
Schepers
,
H. M.
, and
Veltink
,
P. H.
, 2006, “
Estimation of Ankle Moment Using Ambulatory Measurement of Ground Reaction Force and Movement of Foot and Ankle
,”
Proceedings of First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
399
401
.
16.
Schepers
,
H. M.
,
Koopman
,
H.
, and
Veltink
,
P. H.
, 2007, “
Ambulatory Assessment of Ankle and Foot Dynamics
,”
Proceedings of IEEE Transactions on Biomedical Engineering
, pp.
895
90
17.
Ledoux
,
W.
,
Camacho
,
D.
,
Ching
,
R.
, and
Sangeorzan
,
B.
, 2000, “
The Development and Validation of a Computational Foot and Ankle Model
,”
Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology
, Vol.
4
, pp.
2899
2902
.
18.
Cheung
,
J. T. -M. T.-M.
,
Zhang
,
M.
,
Leung
,
A. K.-L. K.-L.
, and
Fan
,
Y.-B.
, 2005, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
,
38
, pp.
1045
1054
.
19.
Liacouras
,
P. C.
, and
Wayne
,
J. S.
, 2007, “
Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies
,”
ASME J. Biomech. Eng.
,
129
, pp.
811
817
.
20.
Koopman
,
B.
,
Grootenboer
,
H. J.
, and
de Jongh
,
H. J.
, 1995, “
Inverse Dynamics Model for the Analysis, Reconstruction and Prediction of Bipedal Walking
,”
J. Biomech.
,
28
(
11
), pp.
1369
1376
.
21.
Glitsch
,
U.
, and
Baumann
,
W. S.
, 1997, “
Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
,
30
(
11–12
), pp.
1123
1131
.
22.
Neptune
,
R.
,
Kautz
,
S.
, and
Zajac
,
F.
, 2001, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.
23.
Gnther
,
M.
, and
Blickhan
,
R.
, 2002, “
Joint Stiffness of the Ankle and the Knee in Running
,”
J. Biomech.
,
35
(
11
), pp.
1459
1474
.
24.
Colobert
,
B.
,
Cretual
,
A.
,
Allard
,
P.
, and
Delamarche
,
P.
, 2006, “
Force-Plate Based Computation of Ankle and Hip Strategies From Double-Inverted Pendulum Model
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
4
), pp.
427
434
.
25.
Sasimontonkul
,
S.
,
Bay
,
B. K.
, and
Pavol
,
M. J.
, 2007, “
Bone Contact Forces on the Distal Tibia During the Stance Phase of Running
,”
J. Biomech.
,
40
(
15
), pp.
3503
3509
.
26.
Blajer
,
W.
,
Dziewiecki
,
K.
, and
Mazur
,
Z.
, 2007, “
Multibody Modeling of Human Body for the Inverse Dynamics Analysis of Sagittal Plane Movements
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
217
232
.
27.
Meyer
,
A. R.
,
Wang
,
M.
,
Smith
,
P. A.
, and
Harris
,
G. F.
, 2007, “
Modeling Initial Contact Dynamics During Ambulation With Dynamic Simulation
,”
Med. Biol. Eng. Comput.
,
45
(
4
), pp.
387
394
.
28.
Iida
,
F.
,
Rummel
,
J.
, and
Seyfarth
,
A.
, 2008, “
Bipedal Walking and Running With Spring-Like Biarticular Muscles
,”
J. Biomech.
,
41
(
3
), pp.
656
667
.
29.
Leardini
,
A.
,
O’Connor
,
J.
,
Catani
,
F.
, and
Giannini
,
S.
, 1999, “
Kinematics of the Human Ankle Complex in Passive Flexion; A Single Degree of Freedom System
,”
J. Biomech.
,
32
(
2
), pp.
111
118
.
30.
Leardini
,
A.
,
Stagni
,
R.
, and
O’Connor
,
J.
, 2001, “
Mobility of the Subtalar Joint in the Intact Ankle Complex
,”
J. Biomech.
,
34
(
6
), pp.
805
809
.
31.
Kutzbach
,
K.
, 1929, “
Mechanische leitungsverzweigung; ihre gesetze und anwendungen
,”
Maschinbau der Betrieb
,
8
(
21
), pp.
710
716
.
32.
Grood
,
E.
, and
Suntay
,
W.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
You do not currently have access to this content.