Physical and aerodynamic characteristics of a bird in flight offer benefits over typical propeller or rotor driven miniature air vehicle (MAV) locomotion designs in certain applications. A number of research groups and companies have developed flapping wing vehicles that attempt to harness these benefits. The purpose of this paper is to report different types of flapping wing miniature air vehicle designs and compare their salient characteristics. This paper is focused on mechanical design aspects of mechanisms and wings. The discussion presented will be limited to miniature-sized flapping wing air vehicles, defined as 10 to 100 g total weight. The discussion will be focused primarily on designs which have performed at least one successful test flight. This paper provides representative designs in each category, rather than providing a comprehensive listing of all existing designs. This paper will familiarize a newcomer to the field with existing designs and their distinguishing features. By studying existing designs, future designers will be able to adopt features from other successful designs. This paper also summarizes the design challenges associated with the further advancement of the field and deploying flapping wing vehicles in practice.

References

References
1.
Hoyo
,
J. D.
,
Elliott
,
A.
, and
Christie
,
D. A.
, 1992,
Handbook of the Birds of the World
,
Lynx Edicions
,
Barcelona
.
2.
Delaurier
,
J.
, 1993, “
An Aerodynamic Model for Flapping-Wing Flight
,”
Aeronaut J.
,
93
, pp.
125
130
.
3.
Muniappan
,
A.
,
Baskar
,
V.
, and
Duriyanandhan
,
V.
, 2005, “
Lift and Thrust Characteristics of Flapping Wing Micro Air Vehicle (Mav)
,” AIAA Paper No. 2005-1055, Reno, Nevada.
4.
Siciliano
,
B.
, 2008,
Springer Handbook of Robotics
,
Springer
,
NY
.
5.
Madangopal
,
R.
,
Khan
,
Z.
, and
Agrawal
,
S.
, 2005, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
817
.
6.
Pornsin-Sirirak
,
T.
,
Tai
,
Y.
,
Ho
,
C.
, and
Keennon
,
M.
, 2001, “
Microbat: A Palm-Sized Electrically Powered Ornithopter
,”
Proceedings of the NASA/JPL Workshop on Biomorphic Robotics
, Pasadena, CA.
8.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S.
, 2009, “
Integrated Product and Process Design for a Flapping Wing Drive-Mechanism
,”
ASME J. Mech. Des.
,
131
, p.
061006
.
9.
Mueller
,
T. J.
, 2001,
Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
12.
Jones
,
K. D.
,
Bradshaw
,
C. J.
,
Papadopoulos
,
J.
, and
Platzer
,
M. F.
, 2004, “
Improved Performance and Control of Flapping-Wing Propelled Micro Air Vehicles
,”
Proceedings of the AIAA 42nd Aerospace Sciences Meeting and Exhibit
, Reno, Nevada.
13.
Croon
,
C.
,
Ruijsink
,
R.
, and
Wagter
,
C.
, 2009, “
Design, Aerodynamics, and Vision-Based Control of the Delfly
,”
Int. J. Micro Air Veh.
,
1
(
2
), pp.
71
97
.
14.
Cox
,
A.
,
Monopoli
,
D.
,
Cveticanin
,
D.
,
Goldfarb
,
M.
, and
Garcia
,
E.
, 2002, “
The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles
,”
J. Intell. Mater. Syst. Struct.
,
13
(
9
), pp.
611
615
.
15.
Mueller
,
D.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
, 2010, “
Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Design
,”
Exp. Mech.
,
50
(
6
), pp.
725
735
.
16.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
, 1999, “
Flapping and Flexiblewings for Biological and Micro Air Vehicles
,”
Prog. Aerosp. Sci.
,
35
, pp.
455
505
.
17.
Zdunich
,
P.
,
Bilyk
,
D.
,
MacMaster
,
M.
,
Loewen
,
D.
,
DeLaurier
,
J.
,
Kornbluh
,
R.
,
Low
,
T.
,
Stanford
,
S.
, and
Holeman
,
D.
, 2007, “
Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle
,”
J. Aircr.
,
44
(
5
), pp.
1701
1711
.
18.
DeLuca
,
A. M.
,
Reeder
,
M. F.
,
Freeman
,
J.
, and
Oi
,
M. V.
, 2006, “
Flexible- and Rigid-Wing Micro Air Vehicle: Lift and Drag Comparison
,”
J. Aircr.
,
43
, p.
2
.
19.
Sane
,
S. P.
, and
Dickinson
,
M. H.
, 2002, “
The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight
,”
J. Exp. Biol.
,
205
, pp.
1087
1096
.
20.
Yang
,
L.-J.
,
Hsu
,
C.-K.
,
Ho
,
J.-Y.
, and
Feng
,
C.-K.
, 2007, “
Flapping Wings With Pvdf Sensors to Modify the Aerodynamic Forces of a Micro Aerial Vehicle
,”
Sens. Actuators, A
,
139
(
1–2
), pp.
95
103
.
21.
Hsu
,
C.-K.
,
Ho
,
J.-Y.
,
Feng
,
G.-H.
,
Shih
,
H.-M.
, and
Yang
,
L.-J.
, 2006, “
A Flapping Mav With Pvdf-Parylene Composite Skin
,”
Proceedings of the Asia-Pacific Conference of Transducers and Micro-Nano Technology
.
22.
Berg
,
C. V. D.
, and
Ellington
,
C.
, 1997, “
The Vortex Wake of a ‘Hovering’ Model Hawkmoth
,”
Philos. Trans. R. Soc. London, Ser. B
,
352
(
1351
), pp.
317
328
.
23.
Ellington
,
C.
,
Berg
,
C. V. D.
,
Willmott
,
A.
, and
Thomas
,
A.
, 1996, “
Leading-Edge Vortices in Insect Flight
,”
Nature (London)
,
384
(
6610
), pp.
626
630
.
24.
Birch
,
J.
, and
Dickinson
,
M.
, 2001, “
Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings
,”
Nature (London)
,
412
(
6848
), pp.
729
733
.
25.
Dickinson
,
M.
,
Lehmann
,
F.
, and
Sane
,
S.
, 1999, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
, pp.
1954
1960
.
26.
Dickinson
,
M.
, and
Gotz
,
K.
, 1993, “
Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers
,”
J. Exp. Biol.
,
174
, pp.
45
64
.
27.
Wang
,
Z.
,
Birch
,
J.
, and
Dickinson
,
M.
, 2004, “
Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations Vs. Robotic Wing Experiments
,”
J. Exp. Biol.
,
207
, pp.
449
460
.
28.
Weis-Fogh
,
T.
, 2005, “
Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production
,”
J. Exp. Biol.
,
59
(
1973
), pp.
169
230
.
29.
Hsu
,
C.-K.
,
Evans
,
J.
,
Vytla
,
S.
, and
Huang
,
P.
, 2010,
Development of Flapping Wing Micro Air Vehicles - Design, Cfd, Experiment and Actual Flight
,
Orlando
,
FL
.
30.
Breugel
,
F. V.
,
Teoh
,
Z. E.
, and
Lipson
,
H.
, 2009,
Flying Insects and Robots
,
Springer
,
Berlin, Heidelberg
.
31.
Mueller
,
D.
,
Gerdes
,
J.
, and
Gupta
,
S.K.
, 2009, “
Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicles
,”
ASME Mechanism and Robotics Conference
, San Diego. Aug. 30–Sep. 2.
32.
Billingsley
,
D.
,
Slipher
,
G.
,
Grauer
,
J.
, and
Hubbard
,
J.
, 2009, “
Testing of a Passively Morphing Ornithopter Wing
,” AIAA Paper No. 2009-1828.
33.
Billingsley
,
D.
, and
Hubbard
,
J.
, 2007, “
Passive Wing Morphing for Improved Lift in Flapping Wing Ornithopters
,”
Proceedings of the AIAA Student Conference Region I-MA
.
34.
Tsai
,
B.-J.
, and
Fu
,
Y.-C.
, 2009, “
Design and Aerodynamic Analysis of a Flapping-Wing Micro Aerial Vehicle
,”
Aerosp. Sci. Technol.
,
13
(
7
), pp.
383
392
.
35.
Malolan
,
V.
,
Dineshkumar
,
M.
, and
Baskar
,
V.
, 2004, “
Design and Development of Flapping Wing Micro Air Vehicle
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, Nevada, Jan. 5–8.
36.
Banala
,
S.
, and
Agrawal
,
S.
, 2005, “
Design and Optimization of a Mechanism for Out-of-Plane Insect Wing-Like Motion With Twist
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
841
844
.
37.
Galinski
,
C.
, and
Zbikowski
,
R.
, 2007, “
Materials Challenges in the Design of an Insect-Like Flapping Wing Mechanism
,”
Mater. Des.
,
28
(
3
), pp.
783
796
.
38.
Yan
,
J.
,
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sitti
,
M.
, and
Fearing
,
R. S.
, 2001, “
Towards Flapping Wing Control for a Micromechanical Flying Insect
,”
Proceedings of the Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on
, Vol.
4
, pp.
3901
3908
.
39.
Fenelon
,
M. A. A.
, and
Furukawa
,
T.
, “
Design of an Active Flapping Wing Mechanism and a Micro Aerial Vehicle Using a Rotary Actuator
,”
Mech. Mach. Theory
,
45
(
2
), pp.
137
146
.
40.
Tobalske
,
B.
, 2010, “
Hovering and Intermittent Flight in Birds
,”
Bioinspir. Biomim.
,
5
(
4
), p.
045004
.
41.
Akos
,
Z.
,
Nagy
,
M.
,
Leven
,
S.
, and
Vicsek
,
T.
, 2008, “
Comparing Bird and Human Soaring Strategies
,”
Proc. Natl. Acad. Sci. USA
,
105
(
11
), p.
4139
.
42.
Akos
,
Z.
,
Nagy
,
M.
,
Severin
,
L.
, and
Vicsek
,
T.
, 2010, “
Thermal Soaring Flight of Birds and Unmanned Aerial Vehicles
,”
Bioinspir. Biomim.
,
5
(
4
), p.
045003
.
43.
Brown
,
R.
, and
Fedde
,
M.
, 1993, “
Airflow Sensors in the Avian Wing
,”
J. Exp. Biol.
,
179
(
1
), pp.
13
30
.
44.
Usherwood
,
J.
,
Hedrick
,
T.
,
Mcgowan
,
C.
, and
Biewener
,
A.
, 2005, “
Dynamic Pressure Maps for Wings and Tails of Pigeons in Slow, Flapping Flight, and Their Energetic Implications
,”
J. Exp. Biol.
,
208
(
2
), pp.
355
369
.
46.
47.
Harper
,
E. J.
,
Lambert
,
L.
, and
Moodie
,
N.
, 1998, “
The Comparative Nutrition of Two Passerine Species: The Canary (Serinus canarius) and the Zebra Finch (Poephila guttata)
,”
J. Nutr.
,
128
, pp.
2684S
2685S
.
48.
Suarez
,
R.
, 1992, “
Hummingbird Flight: Sustaining the Highest Mass-Specific Metabolic Rates Among Vertebrates
,”
Cell. Mol. Life Sci.
,
48
(
6
), pp.
565
570
.
49.
Pearson
,
O.
, 1950, “
The Metabolism of Hummingbirds
,”
Condor
,
52
(
4
), pp.
145
152
.
51.
Halkin
,
S. L.
, 1999, “
Northern Cardinal (Cardinalis cardinalis)
,”
Birds N. Am.
,
440
(
32
), pp.
1
32
.
52.
Bejgerowski
,
W.
,
Gerdes
,
J.
,
Gupta
,
S. K.
,
Bruck
,
H. A.
, and
Wilkerson
,
S.
, 2010, “
Design and Fabrication of a Multi-Material Compliant Flapping Wing Drive Mechanism for Miniature Air Vehicles
,”
Proceedings of the ASME Mechanism and Robotics Conference
, Montreal, Canada.
You do not currently have access to this content.