This research investigates using a manipulator to tactilely explore objects and environments when significant backlash affects its joint’s positions. A typical application is the exploration of rough environments, such as oil wells, where the harsh conditions dictate the use of tactile exploration. These conditions can result in large, unknown, and variable backlash in the manipulator’s transmissions, which strongly affects the measurement precision. Here, a method is developed to simultaneously map the unknown surface and identify the joint backlash. The robot probes the surface and uses its encoder readings to construct a partial map of the environment as a combination of geometric primitives. While the surface is built, the same data are also used to estimate backlash in the joints and to correct the surface measurements for backlash error. The effectiveness of the approach is demonstrated in simulation case studies and laboratory experiments.

References

References
1.
Kettler
,
D.
, 2009, “
Robotic Tactile Oil Mapping: Feasibility, Experimental System and Digital Mechatronic Concepts
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
2.
Mazzini
,
F.
,
Kettler
,
D.
,
Guerrero
,
J.
, and
Dubowsky
,
S.
, 2009, “
Tactile Robotic Mapping of Unknown Surfaces: An Application to Oil Well Exploration
,” IEEE International Workshop on Robotic and Sensors Environments,
Lecco
, Italy, pp.
80
85
.
3.
Mazzini
,
F.
,
Kettler
,
D.
,
Guerrero
,
J.
, and
Dubowsky
,
S.
, 2011, “
Tactile Robotic Mapping of Unknown Surfaces, With Application to Oil Wells
,”
IEEE Trans. Instrum. Meas.
,
60
(
2
), pp.
420
429
.
4.
Mazzini
,
F.
, 2011, “
Tactile Mapping of Harsh, Constrained Environments: An Application to Oil Wells
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
Mazzini
,
F.
, and
Dubowsky
,
S.
, 2010, “
The Tactile Exploration of a Harsh Environment by a Manipulator With Joint Backlash
,” Proceedings of the ASME International Design Engineering Technical Conferences,
Montreal
,
Canada
.
6.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
, 2005,
Probabilistic Robotics
,
MIT
,
Cambridge, MA
.
7.
Okamura
,
A.
, and
Cutkosky
,
M.
, 2001, “
Feature Detection for Haptic Exploration With Robotic Fingers
,”
Int. J. Robot. Res.
,
20
(
12
), pp.
925
938
.
8.
Roberts
,
K.
, 1990, “
Robot Active Touch Exploration: Constraints and Strategies
,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp.
980
985
.
9.
Boissonnat
,
J.
,
Guibas
,
L.
, and
Oudot
,
S.
, 2007, “
Learning Smooth Shapes by Probing
,”
Comput. Geom.: Theory Appl.
,
37
(
1
), pp.
38
58
.
10.
Charlebois
,
M.
,
Gupta
,
K.
, and
Payandeh
,
S.
, 1999, “
Shape Description of Curved Surfaces From Contact Sensing Using Surface Normals
,”
Int. J. Robot. Res.
,
18
(
8
), pp.
779
787
.
11.
Moll
,
M.
, and
Erdmann
,
M.
, 2004, “
Reconstructing the Shape and Motion of Unknown Objects With Active Tactile Sensors
,”
Algorithmic Foundations of Robotics V
,
Springer-Verlag
,
New York
, pp.
293
309
.
12.
Allen
,
P.
, and
Michelman
,
P.
, 1990, “
Acquisition and Interpretation of 3-D Sensor Data From Touch
,”
IEEE Trans. Robot. Autom.
,
6
(
4
), pp.
397
404
.
13.
Keren
,
D.
,
Rivlin
,
E.
,
Shimshoni
,
I.
, and
Weiss
,
I.
, 2000, “
Recognizing 3D Objects Using Tactile Sensing and Curve Invariants
,”
J. Math. Imag. Vis.
,
12
(
1
), pp.
5
23
.
14.
Huber
,
M.
, and
Grupen
,
R.
, 1994, “
2-D Contact Detection and Localization Using Proprioceptive Information
,”
IEEE Trans. Robot. Autom.
,
10
(
1
), pp.
23
33
.
15.
Kaneko
,
M.
, and
Tanie
,
K.
, 1994, “
Contact Point Detection for Grasping an Unknown Object Using Self-Posture Changeability
,”
IEEE Trans. Robot. Autom.
,
10
(
3
), pp.
355
367
.
16.
Everist
,
J.
, and
Wei-Min
,
S.
, “
Mapping Opaque and Confined Environments Using Proprioception
,” Proceedings of the IEEE International Conference on Robotics and Automation, pp.
1041
1046
.
17.
Besnard
,
S.
,
Khalil
,
W.
, and
Garcia
,
G.
, 2000, “
Geometric Calibration of Robots Using Multiple Plane Constraints
,”
Adv. Robot. Kinem.
, pp.
61
70
.
18.
Hollerbach
,
J.
, and
Wampler
,
C.
, 1996, “
The Calibration Index and Taxonomy for Robot Kinematic Calibration Methods
,”
Int. J. Robot. Res.
,
15
(
6
), pp.
573
591
.
19.
Meggiolaro
,
M.
,
Scriffignano
,
G.
, and
Dubowsky
,
S.
, 2000, “
Manipulator Calibration Using a Single Endpoint Contact Constraint
,” Proceedings of the ASME Design Engineering Tech Conference, Baltimore, MD.
20.
Mooring
,
B.
,
Driels
,
M.
, and
Roth
,
Z.
, 1991,
Fundamentals of Manipulator Calibration
,
Wiley
,
New York, NY
.
21.
Roth
,
Z.
,
Mooring
,
B.
, and
Ravani
,
B.
, 1987, “
An Overview of Robot Calibration
,”
IEEE J. Robot. Autom.
,
3
(
5
), pp.
377
385
.
22.
Chironis
,
N.
, 1967,
Gear Design and Application
,
McGraw-Hill
,
New York.
23.
Dagalakis
,
N.
, and
Myers
,
D.
, 1985, “
Adjustment of Robot Joint Gear Backlash Using the Robot Joint Test Excitation Technique
,”
Int. J. Robot. Res.
,
4
(
2
), p.
65
.
24.
Sarkar
,
N.
,
Ellis
,
R.
, and
Moore
,
T.
, 1997, “
Backlash Detection in Geared Mechanisms: Modeling, Simulation, and Experimentation
,”
Mech. Syst. Signal Process.
,
11
, pp.
391
408
.
25.
Stein
,
J.
, and
Wang
,
C.
, 1998, “
Estimation of Gear Backlash: Theory and Simulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, p.
74
.
26.
Seidl
,
D.
,
Lam
,
S.
,
Putman
,
J.
, and
Lorenz
,
R.
, 1995, “
Neural Network Compensation of Gear Backlash Hysteresis in Position-Controlled Mechanisms
,”
IEEE Trans. Indust. Appl.
,
31
(
6
), pp.
1475
1483
.
27.
Requicha
,
A.
, and
Voelcker
,
H.
, 1982, “
Solid Modeling: A Historical Summary and Contemporary Assessment
,”
IEEE Comput. Graphics Appl.
,
2
(
2
), pp.
9
24
.
28.
Hogan
,
N.
, 1985, “
Impedance Control-An Approach to Manipulation. I-Theory. II-Implementation. III-Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
1
34
.
29.
Besl
,
P.
, and
Jain
,
R.
, 1988, “
Segmentation Through Variable-Order Surface Fitting
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
10
(
2
), pp.
167
192
.
30.
Ahn
,
S.
, 2004,
Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space
,
Springer-Verlag
,
New York, NY
.
31.
Lukacs
,
G.
,
Martin
,
R.
, and
Marshall
,
D.
, 1998, “
Faithful Least-Squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation
,”
Lect. Notes Comput. Sci.
,
1406
, pp.
671
686
.
32.
Jiang
,
X.
, and
Cheng
,
D.
, 2005, “
A Novel Parameter Decomposition Approach to Faithful Fitting of Quadric Surfaces
,”
Lect. Notes Comput. Sci.
,
3663
, pp.
168
175
.
33.
Sujan
,
V.
, and
Dubowsky
,
S.
, 2005, “
Efficient Information-Based Visual Robotic Mapping in Unstructured Environments
,”
Int. J. Robot. Res.
,
24
(
4
), pp.
275
293
.
34.
Horst
,
R.
,
Pardalos
,
P.
, and
Thoai
,
N.
, 2000,
Introduction to Global Optimization
,
Kluwer Academic Publishers, New York
.
You do not currently have access to this content.