While suction technology was invented long ago, the application of suction to object manipulation thus far has been confined to many small, well-defined problem sets. Its potential for grasping a large range of unknown objects remains relatively unexplored. This paper introduces the design of a suction cup that is “self-sealing.” The suction cups comprising the grasper exert no suction force when the cup(s) are not in contact with an object, but instead exert suction force only when they are in physical contact with an object. Since grasping is achieved purely by passive means, the cost and weight associated with individual sensors, valves, and/or actuators are essentially eliminated. This paper presents the design, analysis, fabrication, and experimental results of an array of such self-sealing suction cups. Finite element analysis of the cup is shown for both compressive and tensile loading, and the quality of the internal seal is quantified. Finally, performance is shown to be comparable to that of a commercially available cup, and grasping capability is demonstrated on a wide range of objects.

References

References
1.
Autumn
,
K.
,
Dittmore
,
A.
,
Santos
,
D.
,
Spenko
,
M.
, and
Cutkosky
,
M.
, 2006, “
Frictional Adhesion: A New Angle on Gecko Attachment
,”
J. Exp. Biol.
,
209
, pp.
3569
3579
.
2.
Beer
,
R. D.
,
Quinn
,
R. D.
,
Chiel
,
H. J.
, and
Ritzmann
,
R. E.
, 1997, “
Biologically Inspired Approaches to Robotics. What can We Learn From Insects?
,”
Commun. ACM
,
40
(
3
), pp.
31
38
.
3.
Hirose
,
S.
, 1993,
Biologically Inspired Robots—Snakelike Locomotors and Manipulators
,
Oxford University Press
,
Oxford, United Kingdom
.
4.
Walker
,
I. D.
,
Dawson
,
D. M.
,
Flash
,
T.
,
Grasso
,
F. W.
,
Hanlon
,
R. T.
,
Hochner
,
B.
,
Kier
,
W. M.
,
Pagano
,
C. C.
,
Rahn
,
C. D.
, and
Zhang
,
Q. M.
, 2005, “
Continuum Robot Arms Inspired by Cephalopods
,”
2005 SPIE Conference on Unmanned Ground Vehicle Technology IV
.
5.
Bandyopadhyay
,
P. R.
,
Hrubes
,
J. D.
, and
Leinhos
,
H. A.
, 2008, “
Biorobotic Adhesion in Water Using Suction Cups
,”
Bioinspir. Biomim.
3
, p.
016003
.
6.
Hirose
,
S.
,
Nagakubo
,
A.
, and
Toyama
,
R.
, 1991, “
Machine That can Walk and Climb on Floors, Walls and Ceilings
,”
Proceedings of the Fifth International Conference on Advanced Robotics, Robots in Unstructured Environments
pp.
753
758
.
7.
Qian
,
Z. Y.
,
Zhao
,
Y. Z.
,
Fu
,
Z.
, and
Cao
,
Q. X.
, 2006, “
Design and Realization of a Non-Actuated Glass-Curtain Wall-Cleaning Robot Prototype With Dual Suction Cups
,”
Int. J. Adv. Manuf. Technol.
,
30
, pp.
147
155
.
8.
Backes
,
P. G.
,
Bar-Cohen
,
Y.
, and
Joffe
,
B.
, 1997, “
The Multifunction Automated Crawling System (MACS)
,”
IEEE International Conference Robotics and Automation
,
1
, pp.
335
340
.
9.
Miyake
,
T.
,
Ishihara
,
H.
,
Shoji
,
R.
, and
Yoshida
,
S.
, 2006, “
Development of Small-Size Window Cleaning Robot by Wall Climbing Mechanism
,”
Proceedings of the 23rd International Symposium on Automation and Robotics in Construction
pp.
215
220
.
10.
Siegel
,
M. W.
,
Kaufman
,
W. M.
, and
Alberts
,
C. J.
, 1993, “
Mobile Robots for Difficult Measurements in Difficult Environments: Application to Aging Aircraft Inspection
,”
Robot. Auton. Syst.
,
11
, pp.
187
194
.
11.
Monkman
,
G. J.
,
Hesse
,
S.
,
Steinmann
,
R.
, and
Schunk
,
H.
, 2007,
Robot Grippers
,
WILEY VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
12.
Kolluru
,
R.
,
Valavanis
,
K. P.
,
Smith
,
S. A.
, and
Tsourveloudis
,
N.
, 2000, “
Design Fundamentals of a Reconfigurable Robotic Gripper System
,”
IEEE Trans. Syst., Man, Cybern.
,
30
(
2
), pp.
181
187
.
13.
Tsourveloudis
,
N.
,
Kolluru
,
R.
,
Valavanis
,
K.
, and
Gracanin
,
D.
, 1999, “
Position and Suction Control of a Reconfigurable Robotic Gripper
,”
Mach. Intell. Robot. Control
,
1
(
2
), pp.
53
62
.
14.
Bouchard
,
A. T.
, 2006, “
Design and Control of a Manipulator for Autonomous Joining of Featureless Panels
,”
Master’s thesis
,
Vanderbilt University
,
Nashville, Tennessee
.
15.
Costo
,
S.
,
Altamura
,
G.
,
Bruzzone
,
L. E.
,
Molfino
,
R. M.
, and
Zoppi
,
M.
, 2002, “
Design of a Reconfigurable Gripper for the Fast Robotic Picking and Handling of Limp Sheets
,”
Proceedings of the 33rd International Symposium on Robotics
.
16.
Hannan
,
M. W.
, and
Burks
,
T. F.
, 2004, “
Current Developments in Automated Citrus Harvesting
,”
2004 ASAE/CSAE Annual International Meeting
.
17.
Monta
,
M.
,
Kondo
,
N.
, and
Ting
,
K. C.
, 1998, “
End-Effectors for Tomato Harvesting Robot
,”
Artif. Intell. Rev.
,
12
, pp.
11
25
.
18.
Neveryd
,
H.
,
Eftring
,
H.
, and
Bolmsjo
,
G.
, 1999, “
The Swedish Experience of Rehabilitation Robotics
,”
Proceedings of Rehabilitation Robotics Workshop
.
19.
Kessens
,
C. C.
, and
Desai
,
J. P.
, 2010, “
Design, Fabrication, and Implementation of Self-Sealing Suction Cup Arrays for Grasping
,”
IEEE International Conference Robotics and Automation
, pp.
765
770
.
20.
Xiong
,
C. H.
,
Wang
,
M. Y.
,
Tang
,
Y.
, and
Xiong
,
Y. L.
, 2005, “
Compliant Grasping With Passive Forces
,”
J. Rob. Syst.
,
22
(
5
), pp.
271
285
.
21.
Wang
,
M. Y.
, 2002, “
Passive Forces in Fixturing and Grasping
,”
Proceedings of the 9th IEEE Conference on Mechatronics and Machine Vision in Practice
.
22.
Commercially available suction cup, pfl 16-si/c-f 15-sit.
23.
Polyjet Rapid Prototyping Materials, FullCure®830 VeroWhite and FullCure®930 TangoPlus.
24.
Choi
,
Y. S.
,
Deyle
,
T.
,
Chen
,
T.
,
Glass
,
J. D.
, and
Kemp
,
C. C.
, 2009, “
Benchmarking Assistive Mobile Manipulation: A List of Household Objects for Robotic Retrieval Prioritized by People With ALS
,”
Proceedings of the 2009 IEEE International Conference of Rehabilitation Robotics (ICORR)
.
25.
Dollar
,
A. M.
, and
Howe
,
R. D.
, 2007, “
The SDM Hand as a Prosthetic Terminal Device: A Feasibility Study
,”
Proceedings of the 2007 IEEE International Conference on Rehabilitation Robotics (ICORR)
.
26.
Klopsteg
,
P. E.
, and
Wilson
,
P. D.
, 1968,
Human Limbs and Their Substitutes
,
Hafner Publishing Co.
,
New York
.
You do not currently have access to this content.