Injury, instrumentation, or surgery may change the functional biomechanics of the spine. Adverse changes at one level may affect the adjacent levels. Modeling these changes can increase the understanding of adjacent-level effects and may help in the creation of devices that minimize adverse outcomes. The current modeling techniques (e.g., animal models, in vitro testing, and finite element analysis) used to analyze these effects are costly and are not readily accessible to the clinician. It is proposed that the pseudo-rigid-body model(PRBM) may be used to accurately predict adjacent level effects in a quick and cost effective manner that may lend itself to a clinically relevant tool for identifying the adjacent-level effects of various treatment options for patients with complex surgical indications. A PRBM of the lumbar spine (lower back) was developed using a compliant mechanism analysis approach. The global moment-rotation response, relative motion, and local moment-rotation response of a cadaveric specimen were determined through experimental testing under three conditions: intact, fused, and implanted with a prototype total disc replacement. The spine was modeled using the PRBM and compared with the values obtained through in-vitro testing for the three cases. The PRBM accurately predicted the moment-rotation response of the entire specimen. Additionally, the PRBM predicted changes in relative motion patterns of the specimen. The resulting models show particular promise in evaluating various procedures and implants in a clinical setting and in the early stage design process.

References

References
1.
Frost
,
H. M.
, 1998, “
From Wolff’s Law to the Mechanostat: A New “Face,” of Physiology
,”
J. Orthop. Sci.
,
3
(
5
), pp.
282
286
.
2.
Stokes
,
I. A.
and
Iatridis
,
J. C.
, 2004, “
Mechanical Conditions That Accelerate Intervertebral Disc Degeneration: Overload Versus Immobilization
,”
Spine (Phila Pa 1976)
,
29
(
23
), pp.
2724
2732
.
3.
Cramer
,
G. D.
,
Fournier
,
J. T.
,
Henderson
,
C. N.
, and
Wolcott
,
C. C.
, 2004, “
Degenerative Changes Following Spinal Fixation in A Small Animal Mode
,”
J. Manipulative Physiol. Ther.
,
27
(
3
), pp.
141
154
.
4.
Park
,
P.
,
Garton
,
H. J.
,
Gala
,
V. C.
,
Hoff
,
J. T.
, and
Mcgillicuddy
,
J. E.
, 2004, “
Adjacent Segment Disease After Lumbar or Lumbosacral Fusion: Review of The Literature
,”
Spine (Phila Pa 1976)
,
29
(
17
), pp.
1938
1944
.
5.
Alini
,
M.
,
Eisenstein
,
S. M.
,
Ito
,
K.
,
Little
,
C.
,
Kettler
,
A. A.
,
Masuda
,
K.
,
Melrose
,
J.
,
Ralphs
,
J.
,
Stokes
,
I.
, and
Wilke
,
H. J.
, 2008, “
Are Animal Models Useful for Studying Human Disc Disorders/Degeneration?
,”
Eur. Spine J.
,
17
(
1
), pp.
2
19
.
6.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
, 1986, “
A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
,
19
(
4
), pp.
331
350
.
7.
Shirazi-Adl
,
A.
, 1991, “
Finite-Element Evaluation of Contact Loads on Facets of an L2-L3 Lumbar Segment in Complex Loads
,”
Spine (Phila Pa 1976)
,
16
(
5
), pp.
533
541
.
8.
Shirazi-Adl
,
A.
, 1994, “
Biomechanics of the Lumbar Spine in Sagittal/Lateral Moments
,”
Spine (Phila Pa 1976)
,
19
(
21
), pp.
2407
2414
.
9.
Shirazi-Adl
,
A.
,
El-Rich
,
M.
,
Pop
,
D. G.
, and
Parnianpour
,
M.
, 2005, “
Spinal Muscle Forces, Internal Loads and Stability in Standing Under Various Postures and Loads-Application of Kinematics-Based Algorithm
,”
Eur. Spine J.
,
14
(
4
), pp.
381
392
.
10.
Bergmark
,
A.
, 1989, “
Stability of the Lumbar Spine. A Study in Mechanical Engineering
,”
Acta. Orthop. Scand. Suppl.
,
230
, pp.
1
54
.
11.
Howell
,
L. L.
,
Compliant Mechanisms
(
John Wiley & Sons
,
New York
, 2001).
12.
Mattson
,
C. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2004, “
Development of Commercially Viable Compliant Mechanisms Using the Pseudo-Rigid-Body Model: Case Studies of Parallel Mechanisms
,”
J. Intell. Mater. Syst. Struc.
,
15
(
3
), pp.
195
202
.
13.
Su
,
H. J.
, 2009, “
A Pseudo-Rigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads, Hai-Jun
,”
J. Mech. Rob.
1
, p.
021008
.
14.
Dado
,
M. H.
, 2001, “
Variable Parametric Pseudo-Rigid-Body Model for Large-Deflection Beams With End Loads
,”
Int. J. Non-Linear Mech.
,
36
(
7
), pp.
1123
1133
.
15.
Howell
,
L. L.
and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
Trans. ASME J. Mech. Des.
,
117
, pp.
156
165
.
16.
Howell
,
L. L.
and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivots
,”
Trans ASME J. Mech. Des.
,
116
, pp.
280
290
.
17.
Howell
,
L. L.
and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
Trans. ASME J. Mech. Des.
,
118
, pp.
121
125
.
18.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
, 2010, “
An Effective Pseudo-Rigid-Body Method for Beam-Based Compliant Mechanisms
,”
Precis. Eng.
,
34
(
3
), pp.
634
639
.
19.
Tanıka
,
E.
, and
Söylemez
,
E.
, 2010,
Analysis and Design of a Compliant Variable Stroke Mechanism
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1385
1394
.
20.
Bandopadhya
,
D.
,
Bhattacharya
,
B.
, and
Dutta
, 2009, “
Pseudo-Rigid Body Modeling of IPMC for a Partially Compliant Four-Bar Mechanism for Work Volume Generation
,”
A., Journal of Intell. Mater. Syst. Struc.
,
20
(
1
), pp.
51
61
.
21.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R.
, and
Culpepper
,
M. L.
, 2010, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
J. Mech. Rob.
,
2
(
3
), pp.
034501
-1–034501-
5
.
22.
DiBiasio
,
C. M.
,
Culpepper
,
M. L.
,
Panas
,
R.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2008, “
Comparison of Molecular Simulation and Pseudo-Rigid-Body Model Predictions for a Carbon Nanotube–based Compliant Parallel–guiding Mechanism
,”
ASME J. Mech. Des.
,
130
(
4
), pp.
042308
–1–042308-
7
.
23.
Sönmez
,
Ü.
, and
Tutum
,
C. C.
, 2008, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
, p.
042304
24.
Pucheta
,
M. A.
and
Cardona
,
A.
, 2010, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.
25.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2003, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
Trans. ASME J. Mech. Des.
,
125
(
4
), pp.
701
708
.
26.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
, 2009, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1900
1909
.
27.
Xu
,
P.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Hu
,
Y.
, 2009, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
,”
J. Mech. Rob.
,
1
, p.
021005
.
28.
Jensen
,
B. D.
and
Howell
,
L. L.
, 2002, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.
29.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2009, “
Fully Compliant Double Tensural Tristable Micromechanisms
,”
J. Micromech. Microeng.
,
19
(
2
) p.
025011
.
30.
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2005, “
Fully Compliant Tensural Bistable Micro-mechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.
31.
Baker
,
M. S.
, and
Howell
,
L. L.
, 2002, “
On-Chip Actuation of an In-Plane Compliant Bistable Micromechanism
,”
Trans. IEEE ASME, J. Microelectromech. Syst.
,
11
(
5
), pp.
566
573
.
32.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2005, “
A Three Degree-of-Freedom Model for Self-Retracting Fully Compliant Bistable Micromechanisms
,”
J. Mech. Des.
,
127
(
4
), pp.
739
744
.
33.
Pham
,
H. H.
,
Chen
,
I. M.
, and
Yeh
,
H. C.
, 2005, “
Micro-Motion Selective-Actuation X Y Z Flexure Parallel Mechanism: Design and Modeling
,”
J. Micromechatr.
,
3
(
1
), pp.
51
73
.
34.
Wang
,
Y. L.
, “
Modular Design Process for a Micro Motion Actuator
,”
Mechatronics
,
15
(
7
), pp.
793
806
.
35.
Wang
,
W.
, and
Yu
,
Y.
, 2010, “
New Approach to the Dynamic Modeling of Compliant Mechanisms
,”
J. Mech. Rob.
,
2
, p.
021003
.
36.
Yu
,
Y.-Q.
,
Howell
,
L. L.
,
Lusk
,
C. P.
,
Yue
,
Y.
, and
He
,
M.-G.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
760
765
.
37.
Lyon
,
S. M.
,
Erickson
,
P. A.
,
Evans
,
M. S.
, and
Howell
,
L. L.
, 1999, “
Prediction of the First Modal Frequency of Compliant Mechanisms Using the Pseudo-Rigid-Body Model
,”
Trans. ASME J. Mech. Des.
,
121
(
2
), pp.
309
313
.
38.
Schmidt
,
H.
,
Heuer
,
F.
, and
Wilke
,
H. J.
, 2008, “
Interaction Between Finite Helical Axes and Facet Joint Forces Under Combined Loading
,
Spine (Phila Pa 1976)
33
,
2741
2748
.
39.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Ghanayem
,
A. J.
,
Diener
,
H.
,
Meade
,
K. P.
,
Dunlap
,
B.
, and
Hodges
,
S. D.
, 2000, “
Load-Carrying Capacity of the Human Cervical Spine in Compression is Increased Under a Follower Load
,”
Spine (Phila Pa 1976)
,
25
(
12
), pp.
1548
1554
.
40.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
, 1999, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine (Phila Pa 1976)
,
24
(
10
), pp.
1003
1009
.
41.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
, 2008, “
A Flexure-Based Bi-Axial Contact-Aided Compliant Mechanism for Spinal Arthroplasty
,”
32nd Annual Mechanisms & Robotics Conference
ASME DETC: Brooklyn, NY, pp.
DETC2008
-
50121
.
42.
O’Leary
,
P.
,
Nicolakis
,
M.
,
Lorenz
,
M. A.
,
Voronov
,
L. I.
,
Zindrick
,
M. R.
,
Ghanayem
,
A.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Sartori
,
M.
,
Gaitanis
,
I. N.
,
Fronczak
,
S.
, and
Patwardhan
,
A. G.
, 2005, “
Response of Charite Total Disc Replacement Under Physiologic Loads: Prosthesis Component Motion Pattern
,”
Spine J.
,
5
(
6
), pp.
590
599
.
You do not currently have access to this content.