This paper presents a geometric analysis and synthesis theory for quotient kinematics machines (QKMs). Given a desired motion type described by a subgroup G of the special Euclidean group SE(3), QKM refers to a left-and-right hand system that realizes G through the coordinated motion of two mechanism modules, one synthesizing a subgroup H of G, and the other a complement of H in G, denoted by G/H. In the past, QKMs were often categorized into hybrid kinematics machines (HKMs) and were treated on a case-by-case basis. We show that QKMs do have a unique and well-defined kinematic structure that permits a unified and systematic treatment of their synthesis and design. We also study the properties of G/H as a novel motion type for parallel kinematics machine (PKM) synthesis. Another contribution of the paper is to model five-axis machines by SE(3)/R(o,z) (where R(o,z) represents the spindle symmetry) and give a complete classification of five-axis QKMs using the same geometric framework.

References

References
1.
Wu
,
Y.
,
Li
,
Z.
,
Ding
,
H.
, and
Lou
,
Y.
, 2008, “
Quotient Kinematics Machines: Concept, Analysis and Synthesis
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008
, pp.
1964
1969
.
2.
Wu
,
Y.
,
Wang
,
H.
,
Li
,
Z.
,
Lou
,
Y.
, and
Shi
,
J.
, 2010, “
Quotient kinematics machines: concept, analysis and Synthesis
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2739
2744
.
3.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
, 2007, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.
4.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
, 2002, “
New Kinematic Structures for 2-, 3-, 4-, and 5-dof Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.
5.
Tsai
,
L.
, and
Joshi
,
S.
, 2002, “
Kinematic Analysis of 3-dof Position Mechanisms for Use in Hybrid Kinematic Machines
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
245
253
.
6.
Bohez
,
E.
, 2002, “
Five-Axis Milling Machine Tool Kinematic Chain Design and Analysis
,”
Int. J. Mach. Tools Manuf.
,
42
(
4
), pp.
505
520
.
7.
Refaat
,
S.
,
Hervé
,
J.
,
Nahavandi
,
S.
, and
Trinh
,
H.
, 2006, “
Asymmetrical Three-Dofs Rotational-Translational Parallel-Kinematics Mechanisms Based on Lie Group Theory
,”
Eur. J. Mech. A/Solids
,
25
(
3
), pp.
550
558
.
8.
Refaat
,
S.
,
Hervé
,
J.
,
Nahavandi
,
S.
, and
Trinh
,
H.
, 2007, “
Two-Mode Overconstrained Three-Dofs Rotational-Translational Linear-Motor-Based Parallel-Kinematics Mechanism for Machine Tool Applications
,”
Robotica
,
25
, pp.
461
466
.
10.
Lee
,
C.
, and
Hervé
,
J.
, 2006, “
Translational Parallel Manipulators With Doubly Planar Limbs
,”
Mech. Mach. Theory
,
41
(
4
), pp.
433
455
.
11.
Huang
,
Z.
, and
Li
,
Q.
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Robot. Res.
,
22
(
1
), pp.
59
79
.
12.
Tsai
,
L.
,
Robot Analysis: The Mechanics of SerialParallel Manipulators
,
Wiley
,
New York
, 1999.
13.
Fang
,
Y.
, and
Tsai
,
L.
, 2002 “
Structure Synthesis of a Class of 4-DOF and 5-DOF Parallel Manipulators With Identical Limb Structures
,”
Int. J. Robot. Res.
,
21
(
9
), pp.
799
810
.
14.
Kong
,
X.
, and
Gosselin
,
C.
, 2007, “
Type Synthesis of Parallel Mechanisms
,”
Springer Tracts in Advanced Robotics
, Vol.
33
.,
Springer Verlag
,
Berlin, Heidelberg
.
15.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3-dof Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
101
108
.
16.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3t1r 4-dof Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
181
190
.
17.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3-Dof Translational Parallel Manipulators Based on Screw Theory
,”
Trans. ASME J. Mech. Des.
,
126
(
1
), pp.
83
92
.
18.
Kong
,
X.
, and
Gosselin
,
C.
, 2005, “
Type Synthesis of 5-Dof Parallel Manipulators Based on Screw Theory
,”
J. Rob. Syst.
,
22
(
10
), pp.
535
547
.
19.
Merlet
,
J.
, 2006, “
Parallel Robots
,”
Solid Mechanics and Its Applications
,
2nd ed.
, pp.
27
93
,
Springer, Dordrecht
, Vol.
128
.
20.
Hervé
,
J.
, 2003, The Planar Spherical Kinematic Bond: Implementation in Parallel Mechanisms ,” pp.
1
19
. http://www.parallemic.org/Reviews/Review013.htmlhttp://www.parallemic.org/Reviews/Review013.html, ParallelMIC.
21.
Karouia
,
M.
, and
Hervé
,
J.
, 2005. “
Asymmetrical 3-Dof Spherical Parallel Mechanisms
,”
Eur. J. Mech. A/Solids
,
24
(
1
), pp.
47
57
.
23.
Li
,
Q.
, and
Hervé
,
J.
, 2010, “
1t2r Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
401
410
.
24.
Terrier
,
M.
,
Giménez
,
M.
, and
Hascoët
,
J.
, 2005, “
Verne-A Five-Axis Parallel Kinematics Milling Machine
,”
Proc. Inst. Mech. Eng., Part B
,
219
(
3
), pp.
327
336
.
25.
Boothby
,
W.
, 2003,
An Introduction to Differentiable Manifolds and Riemannian Geometry
,
2nd ed.
, pp.
41
46
,
Academic, Amsterdam
.
26.
Selig
,
J.
, 1996,
Geometrical Methods in Robotics (Monographs in Computer Science)
.
Springer
,
New York
.
27.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
, 1994.
28.
Hervé
,
J.
, 1999, “
The Lie Group of Rigid Body Displacements, A Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.
29.
Hervé
,
J.
, and
Sparacino
,
F.
, 1991, “
Structural Synthesis of Parallel Robots Generating Spatial Translation
,”
Proceedings of the 5th IEEE International Conference on Advanced Robotics
, Pisa, Italy, pp.
808
813
.
30.
Beckers
,
J.
,
Patera
,
J.
,
Perroud
,
M.
, and
Winternitz
,
P.
, 1976, “
Subgroups of the Euclidean Group and Symmetry Breaking in Nonrelativistic Quantum Mechanics
,”
J. Math. Phys.
,
18
(
1
), pp.
72
83
.
31.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J.
, 2004, “
Type Synthesis of 3r2t 5-dof Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
173
180
.
32.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J.
, 2004, “
Displacement Manifold Method for Type Synthesis of Lower-Mobility Parallel Mechanisms
,”
Sci. China, Ser. E: Technol. Sci.
,
47
(
6
), pp.
641
650
.
33.
Kong
,
X.
,
Gosselin
,
C.
, and
Richard
,
P.
, 2007, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
Trans. ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
34.
Bonev
,
I.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
, 2002, “
Advantages of the Modified Euler Angles in the Design and Control of PKMS
,”
2002 Parallel Kinematic Machines International Conference
, pp.
171
188
.
35.
Xie
,
F.
,
Liu
,
X.
,
Wang
,
J.
, and
Wang
,
L.
, 2009, “
Kinematic Analysis of the spkm165, A 5-Axis Serial-Parallel Kinematic Milling Machine
,”
Proceedings of the ICIRA
, pp.
592
602
36.
Neumann
,
K.
, 2002, “
Tricept Applications
,”
Proceedings of the 3rd Chemnitz Parallel Kinematics Seminar
, pp.
547
551
.
38.
Rosheim
,
M.
, and
Sauter
,
G.
, 2002, “
New High-Angulation Omni-Directional Sensor Mount
,”
Proceedings of SPIE-The International Society for Optical Engineering
, Vol.
4821
, pp.
163
174
.
39.
Schoppe
,
E.
,
Ponisch
,
A.
, and
Maier
,
V.
, 2002, “
Tripod Machine skm 400-Design, Calibration and Practical Application
,”
Proceedings of the 3rd Chemnitz Parallel Kinematics Seminar
, pp.
579
594
.
You do not currently have access to this content.