This paper investigates the 6R overconstrained mechanisms by looking at an arrangement that axes intersect at two centers with arbitrary intersection-angles. From the close-loop matrix equation of the mechanism, the paper develops a set of geometric constraint equations of the 6R double-centered overconstrained mechanisms. This leads to the axis constraint equation after applying the Sylvester’s dialytic elimination method. The equation reveals the geometric constraint of link and axis parameters and identifies three categories of the 6R double-centered overconstrained mechanisms with arbitrary axis intersection-angles. The first two categories present two 6R double-centered overconstrained mechanisms and a 6R spherical mechanism. The last category evolves into the 6R double-spherical overconstrained mechanism with arbitrary axis intersection-angles at each spherical center. This further evolves into Baker’s double-Hooke mechanism and his derivative double-spherical mechanism with orthogonal axis intersection. The paper further develops the joint-space solution of the 6R double-centered overconstrained mechanisms based on the geometric constraint equation and verifies the result with a numerical example.

References

References
1.
Bennett
,
G. T.
, 1903, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
2.
Bennett
,
G. T.
, 1905, “
The Parallel Motion of Sarrus and Some Allied Mechanisms
,”
Philos. Mag.
,
6
(
9
), pp.
803
810
.
3.
Myard
,
F. E.
, 1931, “
Contribution La Géométrie
,”
Societe mathématiques de France
,
59
(
1
), pp.
183
210
.
4.
Baker
,
J. E.
, 2008, “
Myard’s First Five-Bar Linkage as a Degeneracy of a Plane-Symmetric Six-Bar Loop
,”
Mech. Mach. Theory
,
43
(
4
), pp.
391
399
.
5.
Goldberg
,
M.
, 1943, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
(
1
), pp.
649
663
.
6.
Baker
,
J. E.
, 1996, “
On 5-Revolute Kinematic Loops With Intersecting Adjacent Joint Axes
,”
Mech. Mach. Theory
,
31
(
8
), pp.
1167
183
.
7.
Bennett
,
G. T.
, 1914, “
The Skew Isogram Mechanism
,”
Proc. London Math. Soc.
,
23
(
1
), pp.
151
173
.
8.
Bricard
,
R.
, 1927, “
Leçons De Cinématique
,” Tome II Cinématique Appliquée, pp.
7
12
.
9.
Altmann
,
P. G.
, 1954, “
Communications to Grodzinski, P. and M’ewen, E, Link Mechanisms in Modern Kinematics
,”
Proc. Inst. Mech. Eng.
,
168
(
37
), pp.
889
896
.
10.
Waldron
,
K. J.
, 1968, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.
11.
Schatz
,
P.
, 1975, Rhythmusforschung Und Technik, Verlag Freies Geistesleben.
13.
Duffy
,
J.
, and
Crane
,
J.
, 1980, “
A Displacement Analysis of the General Spatial 7-Link, 7r Mechanism
,”
Mech. Mach. Theory
,
15
(
3
), pp.
153
169
.
14.
Bottema
,
O.
, and
Roth
,
B.
, 1990,
Theoretical Kinematics
,
Dover Publications
,
New York
.
15.
Dai
,
J. S.
, 2006, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
,
41
(
1
), pp.
41
52
.
16.
Lee
,
H.
, and
Liang
,
C.
, 1988, “
A New Vector Theory for the Analysis of Spatial Mechanisms
,”
Mech. Mach. Theory
,
23
(
3
), pp.
209
217
.
17.
Raghavan
,
M.
, and
Roth
,
B.
, 1993, “
Inverse Kinematics of the General 6r Manipulator and Related Linkages
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
502
509
.
18.
Jin
,
Q.
, and
Yang
,
T.
, 2002, “
Overconstraint Analysis on Spatial 6-Link Loops
,”
Mech. Mach. Theory
,
37
(
3
), pp.
267
278
.
19.
Lee
,
C.-C.
, and
Dai
,
J. S.
, 2003, “
Configuration Analysis of the Schatz Linkage
,”
Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci.
,
217
(
7
), pp.
779
786
.
20.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2002, “
Null Space Construction Using Cofactors From a Screw Algebra Context
,”
Proc. R. Soc. London
,
458
(
2024
), pp.
1845
1866
.
21.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
22.
Lee
,
C.-C.
, and
Yan
,
H.-S.
, 1993, “
Movable Spatial 6r Mechanisms With Three Adjacent Parallel Axes
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
522
529
.
23.
Mavroidis
,
C.
, and
Roth
,
B.
, 1994,
Analysis and Synthesis of Overconstrained Mechanisms
,
Proceedings of the ASME Design Technical Conferences
, DE-70, Minneapolis, MI,
ASME
,
New York
, pp.
115
133
.
24.
Mavroidis
,
C.
, and
Roth
,
B.
, 1995, “
New and Revised Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
75
82
.
25.
Baker
,
J. E.
, 2002, “
Displacement-Closure Equations of the Unspecialised Double-Hooke’s-Joint Linkage
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1127
1144
.
26.
Cui
,
L.
, and
Dai
,
J. S.
, 2009, “
The Axes Equation and a 6R Double-Spherical Mechanism
,”
Proceedings of the 5th International Workshop on Computational Kinematics
,
Springer
,
New York
, pp.
233
240
.
27.
Luo
,
Z.
, and
Dai
,
J. S.
, 2006, “
Geometric Analysis and Characteristics of a Three-Fixed-Pivoted Multi-Phalanx Robotic Finger
,”
J. Mech. Eng. Sci.
,
220
(
7
), pp.
1075
1082
.
28.
Rodriguez-Leal
,
E.
, and
Dai
,
J. S.
, 2007, “
From Origami to a New Class of Centralized 3-Dof Parallel Mechanisms
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Las Vegas, NV,
USA
.
29.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
, 2010, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.
30.
Mavroidis
,
C.
, and
Beddows
,
M.
, 1997,
A Spatial Overconstrained Mechanism That Can be Used in Practical Applications
, Proceedings of the Fifth Applied Mechanisms & Robotics Conference,
Cincinnati
,
ASME, New York
.
31.
Chen
,
Y.
, and
You
,
Z.
, 2007, “
Spatial 6r Linkages Based on the Combination of Two Goldberg 5r Linkages
,”
Mech. Mach. Theory
,
42
(
11
), pp.
1484
1498
.
32.
Gan
,
W. W.
, and
Pellegrino
,
S.
, 2003, “
Closed-Loop Deployable Structures
,” Proceeding of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfork, VA.
33.
Dai
,
J. S.
, and
Jones
,
J. R.
, 1999, “
Mobility in Metamorphic Mechanism of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
34.
Chen
,
Y.
, and
You
,
Z.
, 2006, “
Square Deployable Frames for Space Applications. Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
220
(
4
), pp.
347
354
.
35.
Chen
,
Y.
, and
You
,
Z.
, 2008, “
On Mobile Assemblies of Bennett Linkages
,”
Proc. R. Soc. A
,
464
(
2093
), pp.
1275
1283
.
36.
Liu
,
S. Y.
, and
Chen
,
Y.
, 2009, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
37.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q.
, and
Jin
,
G.
, 2004, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
,
39
(
4
), pp.
445
458
.
38.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2005, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
675
682
.
39.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
77
(
2
), pp.
215
221
.
40.
Tsai
,
W. L.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
41.
Dai
,
J. S.
, and
Cannella
,
F.
, 2008, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022305
.
42.
Dai
,
J. S.
, “
Surgical Robotics and Its Development and Progress
,”
Robotica
,
28
(
Special Issue 2
), pp.
161
161
.
You do not currently have access to this content.