In this paper, an experimental analysis and validation of a minimum time-jerk trajectory planning algorithm is presented. The technique considers both the execution time and the integral of the squared jerk along the whole trajectory, so as to take into account the need for fast execution and the need for a smooth trajectory, by adjusting the values of two weights. The experimental tests have been carried out by using an accelerometer mounted on a Cartesian robot. The algorithm does not require a dynamic model of the robot, but just its mechanical constraints, and can be implemented in any industrial robot. The outcomes of the tests have been compared with both simulation and experimental results yielded by two trajectory planning algorithms taken from the literature.

References

References
1.
Brogardh
,
T.
, 2007, “
Present and Future Robot Control Development—An Industrial Perspective
,”
Annu. Rev. Control
,
31
(
1
), pp.
69
79
.
2.
Barre
,
P. J.
,
Bearee
,
R.
,
Borne
,
P.
, and
Dumetz
,
E.
, 2005, “
Influence of a Jerk Controlled Movement Law on the Vibratory Behaviour of High-Dynamics Systems
,”
J. Intell. Rob. Syst.
,
42
(
3
), pp.
275
293
.
3.
Bearee
,
R.
,
Barre
,
P. J.
, and
Bloch
,
S.
, 2004, “
Influence of High-Speed Machine Tool Control Parameters on the Contouring Accuracy. Application to Linear and Circular Interpolation
,”
J. Intell. Rob. Syst.
,
40
(
3
), pp.
321
342
.
4.
Sciavicco
,
L.
, and
Siciliano
,
B.
, 2000,
Modelling and Control of Robot Manipulators
,
2nd ed.
,
Springer-Verlag Advanced Textbooks in Control and Signal Processing Series
,
London, UK
.
5.
De Schutter
,
J.
, 2010, “
Invariant Description of Rigid Body Motion Trajectories
,”
ASME J. Mech. Rob.
,
2
, p.
011004
.
6.
Constantinescu
,
D.
, and
Croft
,
E. A.
, 2000, “
Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators Along Specified Paths
,”
J. Rob. Syst.
,
17
(
5
), p.
233249
.
7.
Lin
,
C. S.
,
Chang
,
P. R.
, and
Luh
,
J. Y. S.
, 1983, “
Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots
,”
IEEE Trans. Autom. Control
,
28
(
12
), pp.
1066
1073
.
8.
Piazzi
,
A.
, and
Visioli
,
A.
, 1998, “
Global Minimum-Time Trajectory Planning of Mechanical Manipulators Using Interval Analysis
,”
Int. J. Control
,
71
(
4
), pp.
631
652
.
9.
Von Stryk
,
O.
, and
Schlemmer
,
M.
, 1994, “
Optimal Control of the Industrial Robot Manutec r3
,”
Computational Optimal Control, International Series of Numerical Mathematics
,
R.
Bulirsch
and
D.
Kraft
, eds.,
Birkhauser Verlag
,
Basel
,
Vol. 115
, pp.
367
382
.
10.
Field
,
G.
, and
Stepanenko
,
Y.
, 1996, “
Iterative Dynamic Programming: An Approach to Minimum Energy Trajectory Planning for Robotic Manipulators
,”
Proc. IEEE Int. Conf. Rob. Autom.
,
3
, pp.
2755
2760
.
11.
Saramago
,
S. F. P.
, and
Steffen
,
V.
, 1998, “
Optimization of the Trajectory Planning of Robot Manipulators Tacking into Account the Dynamics of the System
,”
Mech. Mach. Theory
,
33
(
7
), pp.
883
894
.
12.
Saramago
,
S. F. P.
, and
Steffen
,
V.
, 2000, “
Optimal Trajectory Planning of Robot Manipulators in the Presence of Moving Obstacles
,”
Mech. Mach. Theory
,
35
(
8
), pp.
1079
1094
.
13.
Kyriakopoulos
,
K. J.
, and
Saridis
,
G. N.
, 1988, “
Minimum Jerk Path Generation
,” Proceedings of the 1988 IEEE International Conference on Robotics and Automation,
Vol. 1
, pp.
364
369
.
14.
Simon
,
D.
, and
Isik
,
C.
, 1993, “
A Trigonometric Trajectory Generator for Robotic Arms
,”
Int. J. Control
,
57
(
3
), pp.
505
517
.
15.
Piazzi
,
A.
, and
Visioli
,
A.
, 2000, “
Global Minimum-Jerk Trajectory Planning of Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
47
(
1
), pp.
140
149
.
16.
Piazzi
,
A.
, and
Visioli
,
A.
, 1997, “
An Interval Algorithm for Minimum-Jerk Trajectory Planning of Robot Manipulators
,” Proceedings of the 36th Conference on Decision and Control,
Vol. 2
, pp.
1924
1927
.
17.
Lombai
,
F.
, and
Szederkenyi
,
G.
, 2009, “
Throwing Motion Generation Using Nonlinear Optimization on a 6-Degree-of-Freedom Robot Manipulator
,” Proceedings of IEEE International Conference on Mechatronics.
18.
van Dijk
,
N. J. M.
,
van de Wouw
,
N.
,
Nijmeijer
,
H.
, and
Pancras
,
W. C. M.
, 2007, “
Path-Constrained Motion Planning for Robotics Based on Kinematic Constraints
,” Proceedings of the IDETC/CIE ASME.
19.
Dumetz
,
E.
,
Dieulot
,
J. Y.
,
Barre
,
P. J.
,
Colas
,
F.
, and
Delplace
,
T.
, 2006, “
Control of An Industrial Robot Using Acceleration Feedback
,”
J. Intell. Rob. Syst.
,
46
(
2
), p.
111128
.
20.
Cano
,
T.
,
Chapelle
,
F.
,
Lavest
,
J.M.
, and
Ray
,
P.
, 2008, “
A New Approach to Identifying the Elastic Behaviour of a Manufacturing Machine
,”
Int. J. Mach. Tools Manuf.
,
48
(
14
), pp.
1569
1577
.
21.
Gasparetto
A.
, and
Zanotto
V.
, 2007, “
A New Method for Smooth Trajectory Planning of Robot Manipulators
,”
Mech. Mach. Theory
,
42
(
4
), pp.
455
471
.
22.
Gasparetto
A.
, and
Zanotto
V.
, 2008, “
A Technique for Time-Jerk Optimal Planning of Robot Trajectories
,”
Rob. Comput.-Integr. Manufact.
,
24
(
3
), pp.
415
426
.
23.
De Boor
,
C.
, 1978,
A Practical Guide to Splines
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.