The dimensional synthesis of spatial chains for a prescribed set of positions can be applied to the design of parallel robots by joining the solutions of each serial chain at the end-effector. This design method does not provide with the knowledge about the trajectory between task positions and, in some cases, may yield a system with negative mobility. These problems can be avoided for some overconstrained but movable linkages if the finite-screw system associated with the motion of the linkage is known. The finite-screw system defining the motion of the robot is generated by a set of screws, which can be related to the set of finite task positions traditionally used in the synthesis theory. The interest of this paper lies in presenting a method to define the whole workspace of the linkage as the input task for the exact dimensional synthesis problem. This method is applied to the spatial RPRP closed linkage, for which one solution exists.

1.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
, pp.
719
730
.
2.
Angeles
,
J.
, 2002, “
The Qualitative Synthesis of Parallel Manipulators
,”
Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
,
C.
Gosselin
and
I.
Ebert-Uphoff
, eds.
3.
Gogu
,
G.
, 2007,
Structural Synthesis of Parallel Robots. Part 1: Methodology
,
1st ed.
,
Springer
,
New York
.
4.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
, 2005, “
Conceptual Design and Dimensional Synthesis for a 3-dof Module of the Trivariant—A Novel 5-dof Reconfigurable Hybrid Robot
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
3
), pp.
449
456
.
5.
Huang
,
T.
,
Zhanxian
,
L.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
,
C. M.
, 2004, “
Conceptual Design and Dimensional Synthesis of a Novel 2-dof Translational Parallel Robot for Pick-and-Place Operations
,”
AMSE J. Mech. Des.
0161-8458,
126
, pp.
449
455
.
6.
Kim
,
H. S.
, and
Tsai
,
L. -W.
, 2003, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
43
51
.
7.
Affi
,
Z.
,
Romdhane
,
L.
, and
Maalej
,
A.
, 2004, “
Dimensional Synthesis of a 3-Translational-dof in-Parallel Manipulator for a Desired Workspace
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
311
324
.
8.
Kosinska
,
A.
,
Galicki
,
M.
, and
Kedzior
,
K.
, 2003, “
Design and Optimization of Parameters of Delta-4 Parallel Manipulator for a Given Workspace
,”
J. Rob. Syst.
0741-2223,
20
(
9
), pp.
539
548
.
9.
Chablat
,
D.
, and
Wenger
,
P.
, 2003, “
Architecture Optimization of a 3-dof Parallel Mechanism for Machining Applications, the Orthoglide
,”
IEEE Trans. Robot. Autom.
,
19
(
3
), pp.
403
410
.
10.
Merlet
,
J. -P.
, 2005, “
Optimal Design of Robots
,”
Proceedings of Robotics: Science and Systems
, Cambridge, USA.
11.
Wolbrecht
,
E.
,
Su
,
H. -J.
,
Perez
,
A.
, and
McCarthy
,
J. M.
, 2004, “
Geometric Design of Symmetric 3-rrs Constrained Parallel Platforms
,”
Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition
,
ASME
,
New York
.
12.
Kim
,
H. S.
, and
Tsai
,
L. -W.
, 2003, “
Kinematic Synthesis of a Spatial 3-rps Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
92
97
.
13.
Rao
,
N. M.
, and
Rao
,
K. M.
, 2009, “
Dimensional Synthesis of a 3-rps Parallel Manipulator for a Prescribed Range of Motion of Spherical Joints
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
477
486
.
14.
Ravani
,
B.
, and
Roth
,
B.
, 1983, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
(
3
), pp.
460
467
.
15.
Hayes
,
M. J. D.
,
Luu
,
T.
, and
Chang
,
X. W.
, 2004, “
Kinematic Mapping Application to Approximate Type and Dimension Synthesis of Planar Mechanisms
,”
On Advances in Robot Kinematics
,
J.
Lenarcic
and
C.
Galletti
, eds.,
Kluwer
,
Dordrecht
.
16.
Schröcker
,
H. -P.
,
Husty
,
M. L.
, and
McCarthy
,
J. M.
, 2007, “
Kinematic Mapping Based Assembly Mode Evaluation of Planar Four-Bar Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
924
929
.
17.
Wu
,
J.
,
Purwar
,
A.
, and
Ge
,
Q. J.
, 2010, “
Interactive Dimensional Synthesis and Motion Design of Planar 6R Single-Loop Closed Chains via Constraint Manifold Modification
,”
ASME J. Mech. Rob.
1942-4302,
2
(
3
), p.
031012
.
18.
Husty
,
M. L.
,
Pfurner
,
M.
,
Schrocker
,
H. -P.
, and
Brunnthaler
,
K.
, 2007, “
Algebraic Methods in Mechanism Analysis and Synthesis
,”
Robotica
0263-5747,
25
, pp.
661
675
.
19.
Brunnthaler
,
K.
, 2006, “
Synthesis of 4r Linkages Using Kinematic Mapping
,” Ph.D. thesis, University of Innsbruck, Innsbruck, Austria.
20.
Parkin
,
I. A.
, 1992, “
A Third Conformation With the Screw Systems: Finite Twist Displacements of a Directed Line and Point
,”
Mech. Mach. Theory
0094-114X,
27
, pp.
177
188
.
21.
Huang
,
C.
, 1994, “
On the Finite Screw System of the Third Order Associated With a Revolute-Revolute Chain
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
875
883
.
22.
Huang
,
C.
, 1996, “
The Cylindroid Associated With Finite Motions of the Bennett Mechanism
,”
Proceedings of the ASME Design Engineering Technical Conferences
, Irvine, CA, August.
23.
Baker
,
J. E.
, 1998, “
On the Motion Geometry of the Bennett Linkage
,”
Proceedings of the Eighth International Conference on Engineering Computer Graphics and Descriptive Geometry
, pp.
433
437
.
24.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2003, “
Dimensional Synthesis of Bennett Linkages
,”
ASME J. Mech. Des.
0161-8458,
125
(
1
), pp.
98
104
.
25.
Waldron
,
K. J.
, 1973, “
A Study of Overconstrained Linkage Geometry by Solution of Closure Equations—Part II—Four-Bar Linkages With Lower Pair Joints Other Than Screw Joints
,”
Mech. Mach. Theory
0094-114X,
8
, pp.
233
247
.
26.
Baker
,
J. E.
, 1975, “
The Delassus Linkages
,”
Proceedings of the Fourth World Congress on the Theory of Machines and Mechanisms
, p.
4549
.
27.
Huang
,
C.
, 2006, “
Linear Property of the Screw Surface of the Spatial rprp Linkage
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
581
586
.
28.
Perez-Gracía
,
A.
, and
McCarthy
,
J. M.
, 2006, “
The Kinematic Synthesis of Spatial Serial Chains Using Clifford Algebra Exponentials
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
220
(
7
), pp.
953
968
.
29.
Lee
,
E.
, and
Mavroidis
,
C.
, 2002, “
Solving the Geometric Design Problem of Spatial 3r Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
0161-8458,
124
(
4
), pp.
652
661
.
30.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2004, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
0161-8458,
126
(
3
), pp.
425
435
.
31.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
32.
Zlatanov
,
D.
,
Agrawal
,
S.
, and
Gosselin
,
C. L.
, 2005, “
Convex Cones in Screw Spaces
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
710
727
.
33.
Huang
,
C.
,
Sugimoto
,
K.
, and
Parkin
,
I.
, 2008, “
The Correspondence Between Finite Screw Systems and Projective Spaces
,”
Mech. Mach. Theory
0094-114X,
43
, pp.
50
56
.
You do not currently have access to this content.