New stiffness performance indices using the collinear stiffness value (CSV) associated with a given configuration of the machine are proposed. The minimal CSV (MinCSV) is applied to stiffness evaluation for all types of configurations. Similar to the determinant, the MinCSV equals zero in singular configurations. In regular configurations, the MinCSV is applied to evaluation of local stiffness for a given configuration and global stiffness in the workspace, wherein stiffness limitations are satisfied. A screw stiffness value, i.e., the CSV during a screw displacement, presents the general case of the CSV. There are two important special cases: rotational and translational stiffness values. Procedures for evaluation of the MinCSV are developed in natural and dimensionless forms. The CSV of the hexapod are simulated and compared with those of serial-type mechanisms. The proposed approach presents an effective design tool for evaluation and limitation of stiffness of machines and robots.

1.
Rivin
,
E. I.
, 1999,
Stiffness and Damping in Mechanical Design
,
Dekker
,
New York
.
2.
Tsai
,
L. -W.
, 1999,
Robot Analysis
,
Wiley
,
New York
.
3.
Gosselin
,
C.
, 1990, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
377
382
.
4.
Angeles
,
J.
, and
Lopez-Cajun
,
C. S.
, 1992, “
Kinematic Isotropy and the Conditioning Index of Serial Manipulators
,”
Int. J. Robot. Res.
0278-3649,
11
(
6
), pp.
560
571
.
5.
Carbone
,
G.
, and
Ceccarelli
,
M.
, 2007, “
A Comparison of Indices for Stiffness Performance Evaluation
,”
Proceedings of the 12th IFToMM World Congress
, Besanson, France, Jun. 18–21.
6.
Xi
,
F.
,
Zhang
,
D.
,
Mechefske
,
C. M.
, and
Lang
,
Y. T.
, 2004, “
Global Kinetostatic Modeling of Tripod-Based Parallel Kinematic Machine
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
357
377
.
7.
Sen
,
S.
,
Dasgupta
,
B.
, and
Mallik
,
A. K.
, 2003, “
Variational Approach for Singularity-Free Path-Planning of Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
38
, pp.
1165
1183
.
8.
Angeles
,
G.
, 2006, “
Is There a Characteristic Length of a Rigid-Body Displacement?
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
884
896
.
9.
Ceccarelli
,
M.
, and
Carbone
,
G.
, 2002, “
A Stiffness Analysis for CaPaMan (Cassino Parallel Manipulator)
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
427
439
.
10.
Portman
,
V.
, 2008, “
Stiffness Evaluation of Machines and Robots: Collinear Stiffness Value Approach
,”
Proceedings of ESDA2008, Ninth Biennal ASME Conference on Engineering Systems Design and Analysis
, Technion, Haifa, Israel, Jul. 7–9.
11.
Wolfram Research
, 2008, WOLFRAM MATHEMATICA® 7 Documentation Center.
12.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
London
.
13.
Dimentberg
,
F. M.
, 1978,
Theory of Screws and Its Applications
,
Nauka
,
Moscow
, in Russian.
14.
Jung
,
H. K.
,
Crane
,
C. D.
, III
, and
Roberts
,
R. G.
, 2008, “
Stiffness Mapping of Compliant Parallel Mechanisms in a Serial Arrangement
,”
Mech. Mach. Theory
0094-114X,
43
, pp.
271
284
.
15.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2000, “
The Eigenscrew Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
2
), pp.
146
156
.
16.
Chapsky
,
V. S.
,
Portman
,
V. T.
, and
Sandler
,
B. -Z.
, 2007, “
Single-Mass 6-DOF Isotropic Accelerometer With Segmented PSD Sensors
,”
Sens. Actuators, A
0924-4247,
135
, pp.
558
569
.
17.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford
.
18.
Korn
,
G. A.
, and
Korn
,
T. M.
, 1968,
Mathematical Handbook for Scientists and Engineers
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
416
420
.
19.
Shneor
,
Y.
, and
Portman
,
V. T.
, 2010, “
Stiffness of 5-Axis Machines with Serial, Parallel, and Hybrid Kinematics: Evaluation and Comparison
,”
CIRP Ann.
0007-8506,
59
(
1
), pp.
409
412
.
You do not currently have access to this content.